[1] Bochert A., Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann, Math. Ann., 1889, 33, 584-590Google Scholar

[2] Clote P., Kranakis E., Boolean functions, invariance groups, and parallel complexity, SIAM J. Comput., 1991, 20, 553-590Google Scholar

[3] Crama Y., Hammer P.L., Boolean functions. Theory, algorithms, and applications., Encyclopedia of Mathematics and its Applications 142. Cambridge University Press, 2011Google Scholar

[4] Dixon J. D., Mortimer B., Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, 1996Google Scholar

[5] Hall M.,The theory of groups, Chelsea Publishing Company, New York, 1976Google Scholar

[6] Inglis N.F.J., On orbit equivalent permutation groups, Arch. Math., 1984, 43, 297-300Google Scholar

[7] Kisielewicz A., Symmetry groups of Boolean functions and constructions of permutation groups, J. Algebra, 1998, 199, 379-403Google Scholar

[8] Klein F., Vorlesungen über die Theorie der elliptischen Modulfunctionen. Ausgearbeitet und vervollständigt von Dr. Robert Fricke, Teubner, Leipzig, 1890Google Scholar

[9] Kearnes K., personal communication, 2010Google Scholar

[10] Pöschel R., Galois connections for operations and relations, In: K. Denecke, M. Erné, and S.L. Wismath (Eds.), Galois connections and applications, Mathematics and its Applications, 565, Kluwer Academic Publishers, Dordrecht, 2004, 231-258Google Scholar

[11] Pöschel R. and Kalužnin L. A., Funktionen- und Relationenalgebren, Deutscher Verlag der Wissenschaften, Berlin, 1979, Birkhäuser Verlag Basel, Math. Reihe Bd. 67, 1979Google Scholar

[12] Remak R., Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte, J. Reine Angew. Math., 1930, 163, 1-44Google Scholar

[13] Seress Á., Primitive groups with no regular orbits on the set of subsets, Bull. Lond. Math. Soc., 1997, 29, 697-704Google Scholar

[14] Seress Á., Yang K., On orbit-equivalent, two-step imprimitive permutation groups, Computational Group Theory and the Theory of Groups, Contemp. Math., 2008, 470, 271-285Google Scholar

[15] Siemons J., Wagner A., On finite permutation groups with the same orbits on unordered sets, Arch. Math. 1985, 45, 492-500Google Scholar

[16] Wielandt H., Finite permutation groups, Academic Press, New York and London, 1964Google Scholar

[17] Wielandt H., Permutation groups through invariant relations and invariant functions, Dept. of Mathematics, Ohio State University Columbus, Ohio, 1969Google Scholar

## Comments (0)