[1] Ahmad B., Sivasundaram S., Dynamics and stability of impulsive hybrid setvalued integro-differential equations with delay, Nonlinear Anal., 2006, 65(11), 2082-2093Google Scholar

[2] Ahmad B., Sivasundaram S., The monotone iterative technique for impulsive hybrid set valued integro-differential equations, Nonlinear Anal., 2006, 65(12), 2260-2276Google Scholar

[3] Ahmad B., Sivasundaram S., Setvalued perturbed hybrid integro-differential equations and stability in term of two measures, Dynam. Systems Appl., 2007, 16(2), 299-310Google Scholar

[4] Ahmad B., Sivasundaram S., Stability in terms of two measures of setvalued perturbed impulsive delay differential equations, Commun. Appl. Anal., 12(1), 2008, 57-68Google Scholar

[5] Ahmed N.U., Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl., 1994, 12(1), 1-10Google Scholar

[6] Aubin J.-P., Fuzzy differential inclusions, Problems Control Inform. Theory, 1990, 19(1), 55-67.Google Scholar

[7] Aubin J.-P., Cellina A., Differential Inclusions, Set-Valued Maps and Viability Theory, Springer, Berlin, 1984Google Scholar

[8] Aubin J.-P., Da Prato G., The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl., 1998, 16(1), 1-15Google Scholar

[9] Aubin J.-P., Da Prato G., Frankowska H., Stochastic invariance for differential inclusions, Set-Valued Anal., 2000, 8(1-2), 181-201Google Scholar

[10] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Basel, 1990Google Scholar

[11] Balasubramaniam P., Ntouyas S.K., Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl., 2006, 324(1), 161-176Google Scholar

[12] Balasubramaniam P., Vinayagam D., Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space, Stoch. Anal. Appl., 2005, 23(1), 137-151Google Scholar

[13] Bihari I., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 1956, 7, 81-94Google Scholar

[14] Bouchen A., El Arni A., Ouknine Y., Integration stochastique multivoque et inclusions differentielles stochastiques, Stochastics Stochastics Rep., 2000, 68(3-4), 297-327 (in French)Google Scholar

[15] Brandão Lopes Pinto A.I., De Blasi F.S., Iervolino F., Uniqueness and existence theorems for differential equations with convex valued solutions, Boll. Unione Mat. Ital., 1970, 3(4), 47-54Google Scholar

[16] Chung K.L., Williams R.J., Introduction to Stochastic Integration, Birkhäuser, Boston, 1983Google Scholar

[17] Da Prato G., Frankowska H., A stochastic Filippov theorem, Stoch. Anal. Appl., 1994, 12(4), 409-426Google Scholar

[18] De Blasi F.S., Iervolino F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., 1969, 2(4), 194-501 (in Italian)Google Scholar

[19] Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992Google Scholar

[20] Ekhaguere G.O.S., Quantum stochastic differential inclusions of hypermaximal monotone type, Internat. J. Theoret. Phys., 1995, 34(3), 323-353CrossrefGoogle Scholar

[21] Galanis G.N., Gnana Bhaskar T., Lakshmikantham V., Palamides P.K., Set valued functions in Frechet spaces: continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal., 2005, 61(4), 559-575Google Scholar

[22] Hagen K., Multivalued Fields in Condensed Matter, Electrodynamics and Gravitation, World Scientific, Singapore, 2008Google Scholar

[23] Hiai F., Umegaki H., Integrals, conditional expectation, and martingales of multivalued functions, J. Multivar. Anal., 1977, 7(1), 149-182CrossrefGoogle Scholar

[24] Hong S., Differentiability of multivalued functions on time scales and applications to multivalued dynamic equations, Nonlinear Anal., 2009, 71(9), 622-3637Google Scholar

[25] Hong S., Liu J., Phase spaces and periodic solutions of set functional dynamic equations with infinite delay, Nonlinear Anal., 2011, 74(9), 2966-2984Google Scholar

[26] Hu S., Papageorgiou, N., Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Boston, 1997Google Scholar

[27] Hu S., Papageorgiou N., Handbook of Multivalued Analysis, Vol. II: Applications, Kluwer Academic Publishers, Dordrecht, 2000Google Scholar

[28] Jakubowski A, Kamenski˘ı M., Raynaud de Fitte P., Existence of weak solutions to stochastic evolution inclusions, Stoch. Anal. Appl., 2005, 23(4), 723-749Google Scholar

[29] Kisielewicz M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, 1991Google Scholar

[30] Kisielewicz M., Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal., 1993, 6(3), 217-236Google Scholar

[31] Lakshmikantham V., Gnana Bhaskar T., Vasundhara Devi J., Theory of Set Differential Equations in a Metric Space, Cambridge Scientific Publ., Cambridge, 2006Google Scholar

[32] Lakshmikantham V., Mohapatra R.N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Publishers, London, 2003Google Scholar

[33] Lakshmikantham V., Tolstonogov A.A., Existence and interrelation between set and fuzzy differential equations, Nonlinear Anal., 2003, 55(3), 255-268Google Scholar

[34] Li J., Li S., Ogura Y., Strong solutions of Itô type set-valued stochastic differential equations, Acta Math. Sin. (Engl. Ser.), 2010, 26(9), 1739-1748CrossrefGoogle Scholar

[35] Malinowski M.T., On set differential equations in Banach spaces - a second type Hukuhara differentiability approach, Appl. Math. Comput., 2012, 219(1), 289-305CrossrefGoogle Scholar

[36] Malinowski M.T., Interval Cauchy problem with a second type Hukuhara derivative, Inform. Sci., 2012, 213, 94-105Google Scholar

[37] Malinowski M.T., Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 2012, 218(18), 9427-9437CrossrefGoogle Scholar

[38] Malinowski M.T., On equations with a fuzzy stochastic integral with respect to semimartingales, Advan. Intell. Syst. Comput., 2013, 190, 93-101Google Scholar

[39] Malinowski M.T., On a new set-valued stochastic integral with respect to semimartingales and its applications, J. Math. Anal. Appl., 2013, 408(2), 669-680Google Scholar

[40] Malinowski M.T., Approximation schemes for fuzzy stochastic integral equations, Appl. Math. Comput., 2013, 219(24), 11278-11290CrossrefGoogle Scholar

[41] Malinowski M.T., Michta M., Set-valued stochastic integral equations driven by martingales, J. Math. Anal. Appl., 2012, 394(1), 30-47Google Scholar

[42] Malinowski M.T., Michta M., Sobolewska J., Set-valued and fuzzy stochastic differential equations driven by semimartingales, Nonlinear Anal., 2013, 79, 204-220Google Scholar

[43] Mao X., Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process. Appl., 1995, 58(2), 281-292CrossrefGoogle Scholar

[44] Mitoma I., Okazaki Y., Zhang J., Set-valued stochastic differential equation in M-type 2 Banach space, Comm. Stoch. Anal., 2010, 4(2), 215-237Google Scholar

[45] Motyl J., Stochastic functional inclusion driven by semimartingale, Stoch. Anal. Appl., 1998, 16(3), 717-732Google Scholar

[46] Osgood W.F., Beweis der Existenz einer Lösung der Differentialgleichung dy dx D f.x; y/ ohne Hinzunahme der Cauchy- Lipschitz’schen Bedingung, Monatsh. Math. Phys., 1898, 9(1), 331-345 (in German)Google Scholar

[47] Øksendal B., Stochastic Differential Equations: An Introduction and Applications, Springer Verlag, Berlin, 2003Google Scholar

[48] Protter P., Stochastic Integration and Differential Equations: A New Approach, Springer Verlag, New York, 1990Google Scholar

[49] Ren J., Wu J., Zhang X., Exponential ergodicity of non-Lipschitz multivalued stochastic differential equations, Bull. Sci. Math., 2010, 134(4), 391-404Google Scholar

[50] Ren J., Xu S., Zhang X., Large deviations for multivalued stochastic differential equations, J. Theoret. Probab., 2010, 23(4), 1142-1156Google Scholar

[51] Ren J., Wu J., On regularity of invariant measures of multivalued stochastic differential equations, Stochastic Process. Appl., 2012, 122(1), 93-105CrossrefGoogle Scholar

[52] Tolstonogov A.A., Differential Inclusions in a Banach Space, Kluwer Acad. Publ., Dordrecht, 2000Google Scholar

[53] Truong-Van B., Truong X.D.H., Existence results for viability problem associated to nonconvex stochastic differentiable inclusions, Stoch. Anal. Appl., 1999, 17(4), 667-685Google Scholar

[54] Tsokos C.P., Padgett W.J., Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York, 1974 Google Scholar

[55] Tu N.N., Tung T.T., Stability of set differential equations and applications, Nonlinear Anal., 2009, 71(5-6), 1526-1533Google Scholar

[56] Wu J., Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto J. Math., 2011, 51(3), 535-559Google Scholar

[57] Xu S., Multivalued stochastic differential equations with non-Lipschitz coefficients, Chinese Ann. Math. Ser. B, 2009, 30(3), 321-332CrossrefGoogle Scholar

[58] Yun Y.S., Ryu S.U., Boundedness and continuity of solutions for stochastic differential inclusions on infinite dimensional space, Bull. Korean Math. Soc., 2007, 44(4), 807-816Google Scholar

[59] Zhang J., Li S., Mitoma I., Okazaki Y., On the solutions of set-valued stochastic differential equations in M-type 2 Banach spaces, Tohoku Math. J., 2009, 61(2), 417-440 Google Scholar

## Comments (0)