Google Scholar

[1] Bernal-González L., Disjoint hypercyclic operators, Studia Math., 2007, 182(2), 113-131.
Google Scholar

[2] Bonet J., Dynamics of differentiation operator on weighted spaces of entire functions, Math. Z., 2009, 261, 649-657.
Web of ScienceGoogle Scholar

[3] Bonet J., Bonilla A., Chaos of the differentiation operator on weighted Banach spaces of entire functions, Complex Anal. Oper.
Theory, 2013, 7, 33-42.
Web of ScienceGoogle Scholar

[4] Bermúdez T., Bonilla A., Conejero J. A., Peris A., Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces,
Studia Math., 2005, 170, 57-75.
Google Scholar

[5] Bonilla A., Grosse-Erdmann K. G., Frequently hypercyclic operators and vectors, Ergodic Theory Dynam. Systems, 2007, 27,
383-404. Erratum: Ergodic Theory Dynam. Systems, 2009, 29, 1993-1994.
Google Scholar

[6] Bayart F., Matheron É., Dynamics of linear operators, Cambridge Tracts in Mathematics, 179, Camberidge University Press,
Cambridge, 2009.
Google Scholar

[7] Bès J., Martin Ö., Peris A., Disjoint hypercyclic linear fractional composition operators, J. Math. Appl., 2011, 381, 843-856.
Google Scholar

[8] Bès J., Martin Ö., Peris A., Shkarin S., Disjoint mixing operators, J. Funct. Anal., 2012, 263, 1283-1322.
Google Scholar

[9] Bès J., Martin Ö., Sanders R., Weighted shifts and disjoint hypercyclicity, 2012, manuscript.
Web of ScienceGoogle Scholar

[10] Bès J., Peris A., Disjointness in hypercyclicity, J. Math. Anal. Appl., 2007, 336, 297-315.
Google Scholar

[11] Costakis G., Sambarino M., Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc., 2004, 132(2), 385-389.
Google Scholar

[12] Chen R. Y., Zhou Z. H., Hypercyclicity of weighted composition operators on the unit ball of CN, J. Korean Math. Soc., 2011,
48(5), 969-984.
Google Scholar

[13] Grosse-Erdmann K. G., Peris Manguillot A., Linear Chaos, Springer, New York, 2011.
Google Scholar

[14] Harutyunyan A., Lusky W., On the boundedness of the differentiation operator between weighted spaces of holomorphic
functions, Studia Math., 2008, 184, 233-247.
Google Scholar

[15] Lusky W., On generalized Bergman space, Studia Math., 1996, 119, 77-95.
Google Scholar

[16] Lusky W., On the Fourier series of unbounded harmonic functions, J. London. Math. Soc., 2000, 61, 568-580.
Google Scholar

[17] Salas H. N., Dual disjoint hypercyclic operators, J. Math. Anal. Appl., 2011, 374, 106-117.
Google Scholar

[18] Shkarin S., A short proof of existence of disjoint hypercyclic operators, J. Math. Anal. Appl., 2010, 367, 713-715.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.