[1] Y.H. Au-Yeung and N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc.,
89 (1983) 215–218.
Google Scholar

[2] N. Bebiano, R. Lemos, J. da Providência and G. Soares, On generalized numerical ranges of operators on an indefinite inner
product space, Linear and Multilinear Algebra 52 No. 3–4, (2004) 203–233.
Google Scholar

[3] N. Bebiano, H. Nakazato, J. da Providência, R. Lemos and G. Soares, Inequalities for JHermitian matrices, Linear Algebra
Appl. 407 (2005) 125–139.
Google Scholar

[4] N. Bebiano, J. da Providência, A. Nata and G. Soares, Krein Spaces Numerical Ranges and their Computer Generation, Electron.
J. Linear Algebra, 17 (2008) 192–208.
Google Scholar

[5] N. Bebiano, J. da Providência, R. Teixeira, Flat portions on the boundary of the indefinite numerical range of 3 x 3 matrices,
Linear Algebra Appl. 428 (2008) 2863-2879.
Web of ScienceGoogle Scholar

[6] N. Bebiano, I. Spitkovsky, Numerical ranges of Toeplitz operators with matrix symbols, Linear Algebra Appl., 436 (2012)
1721–1726.
Web of ScienceGoogle Scholar

[7] N. Bebiano, J. da Providência, A. Nata and J. P. da Providência, An inverse problem for the indefinite numerical range, Linear
Algebra Appl. to appear.
Google Scholar

[8] M.-T. Chien and H. Nakazato, The numerical range of a tridiagonal operator, J. Math. Anal. Appl., 373, No. 1 (2011), 297–304.
Google Scholar

[9] C.F. Dunkl, P. Gawron, J.A. Holbrook, Z. Puchala and K. Zyczkowski, Numerical shadows: measures and densities of numerical
range, Linear Algebra Appl. 434 (2011) 2042–2080.
Web of ScienceGoogle Scholar

[10] C. Crorianopoulos, P. Psarrakos and F. Uhlig. A method for the inverse numerical range problem. Linear Algebra Appl. 24 (2010)
055019.
Google Scholar

[11] I.Gohberg, P.Lancaster and L.Rodman, Matrices and Indefinite Scalar Product. Birkhäuser, Basel-Boston, 1983.
Google Scholar

[12] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, New York, 1985.
Google Scholar

[13] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
Google Scholar

[14] C.-K. Li and L. Rodman, Shapes and computer generation of numerical ranges of Krein space operators. Electron. J. Linear
Algebra, 3 (1998) 31–47.
Google Scholar

[15] C.-K. Li and L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric, Proc. Amer. Math. Soc.
126 No. 4, (1998) 973–982.
CrossrefGoogle Scholar

[16] C.-K. Li, N.K. Tsing and F. Uhlig. Numerical ranges of an operator on an indefinite inner product space. Electron. J. Linear
Algebra 1 (1996) 1–17.
Google Scholar

[17] M. Marcus and C. Pesce, Computer generated numerical ranges and some resulting theorems. Linear and Multilinear Algebra, 20
(1987), 121–157.
Google Scholar

[18] P.J. Psarrakos, Numerical range of linear pencils, Linear Algebra Appl. 317 (2000), 127-141.
Google Scholar

[19] F. Uhlig, Faster and more accurate computation of the field of values boundary for n by n matrices, Linear and Multilinear
Algebra 62(5) (2014), 554-567.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.