[1] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval analysis. Philadelphia, PA: SIAM, 2009.
Google Scholar

[2] A. Neumaier, Interval methods for systems of equations. Cambridge: Cambridge University Press, 1990.
Google Scholar

[3] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and feasibility of data processing and interval
computations. Kluwer, 1998.
Google Scholar

[4] J. Rohn, “Checking properties of interval matrices,” Technical Report 686, Institute of Computer Science, Academy of Sciences of
the Czech Republic, Prague, 1996.
Google Scholar

[5] J. Rohn, “A handbook of results on interval linear problems,” Technical Report 1163, Institute of Computer Science, Academy of
Sciences of the Czech Republic, Prague, 2012.
Google Scholar

[6] D. Hertz, “The extreme eigenvalues and stability of real symmetric interval matrices,” IEEE Trans. Autom. Control, vol. 37, no. 4,
pp. 532–535, 1992.
CrossrefGoogle Scholar

[7] M. Hladík, D. Daney, and E. P. Tsigaridas, “Characterizing and approximating eigenvalue sets of symmetric interval matrices,”
Comput. Math. Appl., vol. 62, no. 8, pp. 3152–3163, 2011.
Web of ScienceCrossrefGoogle Scholar

[8] Y. Becis-Aubry and N. Ramdani, “State-bounding estimation for nonlinear models with multiple measurements,” in American
Control Conference (ACC 2012), (Montréal, Canada), pp. 1883–1888, IEEE Computer Society, 2012.
Google Scholar

[9] M. S. Darup, M. Kastsian, S. Mross, and M. Mönnigmann, “Efficient computation of spectral bounds for hessian matrices on
hyperrectangles for global optimization,” J. Glob. Optim., pp. 1–22, 2013. DOI: 10.1007/s10898-013-0099-1.
Web of ScienceCrossrefGoogle Scholar

[10] M. Hladík, D. Daney, and E. Tsigaridas, “Bounds on real eigenvalues and singular values of interval matrices,” SIAM J. Matrix
Anal. Appl., vol. 31, no. 4, pp. 2116–2129, 2010.
Web of ScienceCrossrefGoogle Scholar

[11] L. V. Kolev, “Outer interval solution of the eigenvalue problem under general form parametric dependencies,” Reliab. Comput.,
vol. 12, no. 2, pp. 121–140, 2006.
Google Scholar

[12] L. V. Kolev, “Determining the positive definiteness margin of interval matrices,” Reliab. Comput., vol. 13, no. 6, pp. 445–466, 2007.
Web of ScienceGoogle Scholar

[13] M.-H. Matcovschi and O. Pastravanu, “A generalized Hertz-type approach to the eigenvalue bounds of complex interval matrices,”
in IEEE 51st Annual Conference on Decision and Control (CDC 2012), (Hawaii, USA), pp. 2195–2200, IEEE Computer Society,
2012.
Google Scholar

[14] O. Beaumont, “An algorithm for symmetric interval eigenvalue problem,” Tech. Rep. IRISA-PI-00-1314, Institut de recherche en
informatique et systèmes aléatoires, Rennes, France, 2000.
Google Scholar

[15] M. Hladík, D. Daney, and E. P. Tsigaridas, “A filtering method for the interval eigenvalue problem,” Appl. Math. Comput., vol. 217,
no. 12, pp. 5236–5242, 2011.
Web of ScienceGoogle Scholar

[16] J. Rohn, “An algorithm for checking stability of symmetric interval matrices,” IEEE Trans. Autom. Control, vol. 41, no. 1,
pp. 133–136, 1996.
CrossrefGoogle Scholar

[17] Q. Yuan, Z. He, and H. Leng, “An evolution strategy method for computing eigenvalue bounds of interval matrices,” Appl. Math.
Comput., vol. 196, no. 1, pp. 257–265, 2008.
Web of ScienceGoogle Scholar

[18] S. Miyajima, T. Ogita, S. Rump, and S. Oishi, “Fast verification for all eigenpairs in symmetric positive definite generalized
eigenvalue problems,” Reliab. Comput., vol. 14, pp. 24–45, 2010.
Google Scholar

[19] S. M. Rump, “Verification methods: Rigorous results using floating-point arithmetic,” Acta Numer., vol. 19, pp. 287–449, 2010.
Web of ScienceCrossrefGoogle Scholar

[20] J. Rohn, “Checking positive definiteness or stability of symmetric interval matrices is NP-hard,” Commentat. Math. Univ. Carol.,
vol. 35, no. 4, pp. 795–797, 1994.
Google Scholar

[21] A. Nemirovskii, “Several NP-hard problems arising in robust stability analysis,” Math. Control Signals Syst., vol. 6, no. 2,
pp. 99–105, 1993.
Google Scholar

[22] J. Rohn, “Interval matrices: Singularity and real eigenvalues,” SIAM J. Matrix Anal. Appl., vol. 14, no. 1, pp. 82–91, 1993.
Google Scholar

[23] V. Kreinovich, “How to define relative approximation error of an interval estimate: A proposal,” Appl. Math. Sci., vol. 7, no. 5,
pp. 211–216, 2013.
Google Scholar

[24] I. C. F. Ipsen, “Relative perturbation results for matrix eigenvalues and singular values,” Acta Numer., vol. 7, pp. 151–201, 1998.
CrossrefGoogle Scholar

[25] J. Rohn, “Computing the norm kAk1;1 is NP-hard,” Linear Multilinear Algebra, vol. 47, no. 3, pp. 195–204, 2000.
Google Scholar

[26] G. H. Golub and C. F. Van Loan, Matrix computations. Baltimore: Johns Hopkins University Press, 3rd ed., 1996.
Google Scholar

## Comments (0)