[1] Bartels, R.H., Stewart G.W., Algorithm 432: the solution of the matrix equation AX - BX D C, Communications of the ACM,
1972, 15(9), 820-826

[2] Beineke, L.W., Wilson, R.J. (Eds.), Topics in Algebraic Graph Theory, Encyclopedia Math. Appl., Cambridge University Press,
102, Cambridge University Press, 2005

[3] Datta, B., Numerical Methods for Linear Control Systems, Elsevier Science, 2004

[4] Golub G.H., Nash S., Van Loan C., Hessenberg–Schur method for the problem AX + C XB = C, IEEE Trans. Automat. Control,
1979, AC-24(6), 909-913
[Crossref]

[5] Hu D.Y., Reichel L., Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl., 1992, 172, 283-313

[6] Lancaster, P., Tismenetsky, M., The theory of matrices: with applications, 2nd ed., Academic Press, Orlando, 1985

[7] Roth W.E., The equations AX - YB = C and AX - XB = C in matrices, Proc. Amer. Math. Soc., 1952, 3(3), 392-396

[8] Simoncini, V., On the numerical solution of AX - XB = C, BIT, 1996, 36(4), 814-830
[Crossref]

[9] Starke G., Niethammer W., SOR for AX - XB = C, Linear Algebra Appl., 1991, 154/156, 355-375

[10] Woźnicki, Z.I., Solving linear systems: an analysis of matrix prefactorization iterative methods, Matrix Editions, 2009

## Comments (0)