[1] Abdollahi A., Akbari S., Maimani H.R., Non-commuting graph of a group, J. Algebra, 2006, 298, 468–492
Google Scholar

[2] Ambrosio L., Gigli N., Mondino A., Rajala T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ–finite
measure, Trans. Amer. Math. Soc. (in press), preprint available at http://arxiv.org/pdf/1207.4924v2.pdf
Google Scholar

[3] Ambrosio L., Mondino A., Savaré G., On the Bakry–Émery condition, the gradient estimates and the Local–to–Global property of
RCD*(k, n) metric measure spaces, J. Geom. Anal. (in press), preprint available at http://arxiv.org/pdf/1309.4664v1.pdf
Google Scholar

[4] Aubin T., Nonlinear analysis on manifolds: Monge–Ampére equations, Grundlehren der Mathematischen Wissenschaften, 252,
Springer, Berlin, 1982
Google Scholar

[5] Bakry D., Coulhon T., Ledoux M., Saloff–Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 1995, 44, 1033–1074
Google Scholar

[6] Chung F.R.K., Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, AMS publications, New York, 1996
Google Scholar

[7] Chung F.R.K., Grigor’yan A., Yau S.T., Higher eigenvalues and isoperimetric inequalities on riemannian manifolds and graphs,
Comm. Anal. Geom., 2000, 8, 969–1026
Google Scholar

[8] Chung F.R.K., Discrete isoperimetric inequalities, In: Surveys in differential geometry, Vol. IX, Int. Press, Somerville, MA, 2004,
53–82
Google Scholar

[9] Darafsheh M.R., Groups with the same non-commuting graph, Discrete Appl. Math., 2009, 157, 833–837
Web of ScienceGoogle Scholar

[10] Hebey E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, Vol.5, New
York University Courant Institute of Mathematical Sciences, New York, 1999
Google Scholar

[11] Hofmann K.H., Russo F.G., The probability that x and y commute in a compact group, Math. Proc. Cambridge Phil. Soc., 2012,
153, 557–571
Web of ScienceGoogle Scholar

[12] Hofmann K.H., Russo F.G., The probability that xm and yn commute in a compact group, Bull. Aust. Math. Soc., 2013, 87, 503–
513
Web of ScienceGoogle Scholar

[13] Moghaddamfar A.R., About noncommuting graphs, Siberian Math. J., 2005, 47, 1112–1116
Google Scholar

[14] Mondino A., Nardulli S., Existence of isoperimetric regions in noncompact riemannian manifolds under Ricci or scalar curvature
conditions, Comm. Anal. Geom., preprint available at http://arxiv.org/pdf/1210.0567v1.pdf
Google Scholar

[15] Nardulli S., The isoperimetric profile of a noncompact Riemannian manifold for small volumes, Calc. Var. PDE, 2014, 49, 173–195
Google Scholar

[16] Neumann B.H., A problem of Paul Erd˝os on groups, J. Aust. Math. Soc., 1976, 21, 467–472
Google Scholar

[17] Russo F.G., Problems of connectivity between the Sylow graph, the prime graph and the non-commuting graph of a group, Adv.
Pure Math., 2012, 2, 373–378
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.