Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1 (May 2015)

Issues

A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings

Xiangui Zhao
  • Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516007, China, E-mail: xiangui.zhao@foxmail.com
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yang Zhang
  • Department of Mathematics, University of Manitoba, Winnipeg, R3T 2N2, Canada, E-mail: yang.zhang@umanitoba.ca
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-06 | DOI: https://doi.org/10.1515/math-2015-0028

Abstract

Signature-based algorithms are efficient algorithms for computing Gröbner-Shirshov bases in commutative polynomial rings, and some noncommutative rings. In this paper, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings over fields.

Keywords: Gröbner-Shirshov basis; Skew solvable polynomial ring; Signature-based algorithm

References

  • [1] Adams W. W. and Loustaunau P., An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, 1994. Google Scholar

  • [2] Bokut’ L. A., Chen Y., and Shum K. P., Some new results on Gröbner-Shirshov bases, Proceedings of International Conference on Algebra 2010–Advances in Algebraic Structures (W. Hemakul, S. Wahyuni, and P. W. Sy, eds.), 2012, pp. 53–102. Google Scholar

  • [3] Buchberger B., Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal, Ph.D. thesis, University of Innsbruck, 1965. Google Scholar

  • [4] Bueso J. L., Gómez-Torrecillas J., and Verschoren A., Algorithmic methods in non-commutative algebra: Applications to quantum groups, Mathematical Modelling: Theory and Applications, vol. 17, Springer, 2003. Google Scholar

  • [5] Chyzak F. and Salvy B., Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput. 26 (1998), no. 2, 187–227. Google Scholar

  • [6] Faugère J. C., A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1999), no. 1, 61–88. Google Scholar

  • [7] Faugère J. C., A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, 2002, pp. 75–83. Google Scholar

  • [8] Gallego C. and Lezama O., Gröbner bases for ideals of σ-PBW extensions, Comm. Algebra 39 (2011), no. 1, 50–75. Web of ScienceGoogle Scholar

  • [9] Galligo A., Some algorithmic questions on ideals of differential operators, EUROCAL’85, Springer, 1985, pp. 413–421. Google Scholar

  • [10] Gao S., Guan Y., and Volny IV F., A new incremental algorithm for computing Gröbner bases, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM, 2010, pp. 13–19. Google Scholar

  • [11] Gao S., Volny IV F., and Wang M., A new algorithm for computing Gröbner bases, Cryptology ePrint Archive (2010). Google Scholar

  • [12] Giesbrecht M., Reid G., and Zhang Y., Non-commutative Gröbner bases in Poincaré-Birkhoff-Witt extensions, Computer Algebra in Scientific Computing (CASC), 2002. Google Scholar

  • [13] Insa M. and Pauer F., Gröbner bases in rings of differential operators, London Math. Soc. Lecture Note Ser. (1998), 367–380. Google Scholar

  • [14] Kandri-Rody A. and Weispfenning V., Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), no. 1, 1–26. Google Scholar

  • [15] Levandovskyy V. and Schönemann H., Plural: a computer algebra system for noncommutative polynomial algebras, Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 176–183. Google Scholar

  • [16] Ma X., Sun Y., and Wang D., On computing Gröbner bases in rings of differential operators, Sci. China Math. 54 (2011), no. 6, 1077–1087. Google Scholar

  • [17] Mansfield E. L. and Szanto A., Elimination theory for differential difference polynomials, Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 191–198. Google Scholar

  • [18] Oh S.-Q., Catenarity in a class of iterated skew polynomial rings, Comm. Algebra 25 (1997), no. 1, 37–49. Google Scholar

  • [19] Shirshov A. I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Zh. 3 (1962), no. 2, 292–296. Google Scholar

  • [20] Sun Y., Wang D., Ma X., and Zhang Y., A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras, Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation, ACM, 2012, pp. 351–358. Google Scholar

  • [21] Zhang Y. and Zhao X., Gelfand-Kirillov dimension of differential difference algebras, LMS J. Comput. Math. 17 (2014), no. 1, 485– 495. Google Scholar

  • [22] Zhou M. and Winkler F., On computing Gröbner bases in rings of differential operators with coefficients in a ring, Math. Comput. Sci. 1 (2007), no. 2, 211–223. Google Scholar

About the article

Received: 2014-04-23

Accepted: 2015-01-21

Published Online: 2015-05-06


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0028.

Export Citation

©2015 Xiangui Zhao and Yang Zhang. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in