[1] Adams W. W. and Loustaunau P., An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American
Mathematical Society, 1994.
Google Scholar

[2] Bokut’ L. A., Chen Y., and Shum K. P., Some new results on Gröbner-Shirshov bases, Proceedings of International Conference on
Algebra 2010–Advances in Algebraic Structures (W. Hemakul, S. Wahyuni, and P. W. Sy, eds.), 2012, pp. 53–102.
Google Scholar

[3] Buchberger B., Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen
polynomideal, Ph.D. thesis, University of Innsbruck, 1965.
Google Scholar

[4] Bueso J. L., Gómez-Torrecillas J., and Verschoren A., Algorithmic methods in non-commutative algebra: Applications to quantum
groups, Mathematical Modelling: Theory and Applications, vol. 17, Springer, 2003.
Google Scholar

[5] Chyzak F. and Salvy B., Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput. 26
(1998), no. 2, 187–227.
Google Scholar

[6] Faugère J. C., A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1999), no. 1, 61–88.
Google Scholar

[7] Faugère J. C., A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, ACM, 2002, pp. 75–83.
Google Scholar

[8] Gallego C. and Lezama O., Gröbner bases for ideals of σ-PBW extensions, Comm. Algebra 39 (2011), no. 1, 50–75.
Web of ScienceGoogle Scholar

[9] Galligo A., Some algorithmic questions on ideals of differential operators, EUROCAL’85, Springer, 1985, pp. 413–421.
Google Scholar

[10] Gao S., Guan Y., and Volny IV F., A new incremental algorithm for computing Gröbner bases, Proceedings of the 2010
International Symposium on Symbolic and Algebraic Computation, ACM, 2010, pp. 13–19.
Google Scholar

[11] Gao S., Volny IV F., and Wang M., A new algorithm for computing Gröbner bases, Cryptology ePrint Archive (2010).
Google Scholar

[12] Giesbrecht M., Reid G., and Zhang Y., Non-commutative Gröbner bases in Poincaré-Birkhoff-Witt extensions, Computer Algebra
in Scientific Computing (CASC), 2002.
Google Scholar

[13] Insa M. and Pauer F., Gröbner bases in rings of differential operators, London Math. Soc. Lecture Note Ser. (1998), 367–380.
Google Scholar

[14] Kandri-Rody A. and Weispfenning V., Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9
(1990), no. 1, 1–26.
Google Scholar

[15] Levandovskyy V. and Schönemann H., Plural: a computer algebra system for noncommutative polynomial algebras, Proceedings
of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 176–183.
Google Scholar

[16] Ma X., Sun Y., and Wang D., On computing Gröbner bases in rings of differential operators, Sci. China Math. 54 (2011), no. 6,
1077–1087.
Google Scholar

[17] Mansfield E. L. and Szanto A., Elimination theory for differential difference polynomials, Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 191–198.
Google Scholar

[18] Oh S.-Q., Catenarity in a class of iterated skew polynomial rings, Comm. Algebra 25 (1997), no. 1, 37–49.
Google Scholar

[19] Shirshov A. I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Zh. 3 (1962), no. 2, 292–296.
Google Scholar

[20] Sun Y., Wang D., Ma X., and Zhang Y., A signature-based algorithm for computing Gröbner bases in solvable polynomial
algebras, Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation, ACM, 2012, pp. 351–358.
Google Scholar

[21] Zhang Y. and Zhao X., Gelfand-Kirillov dimension of differential difference algebras, LMS J. Comput. Math. 17 (2014), no. 1, 485–
495.
Google Scholar

[22] Zhou M. and Winkler F., On computing Gröbner bases in rings of differential operators with coefficients in a ring, Math. Comput.
Sci. 1 (2007), no. 2, 211–223.
Google Scholar

## Comments (0)