Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2017: 161.82

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Properties of k-beta function with several variables

Abdur Rehman / Shahid Mubeen / Rabia Safdar / Naeem Sadiq
Published Online: 2015-05-08 | DOI: https://doi.org/10.1515/math-2015-0030


In this paper, we discuss some properties of beta function of several variables which are the extension of beta function of two variables. We define k-beta function of several variables and derive some properties of this function which are the extension of k-beta function of two variables, recently defined by Diaz and Pariguan [4]. Also, we extend the formula Γk(2z) proved by Kokologiannaki [5] via properties of k-beta function.

Keywords: k-Gamma function; k-Beta function; Several variables


  • [1] Anderson G.D., Vamanmurthy M.K., Vuorinen M.K., Conformal Invarients, Inequalities and Quasiconformal Maps, Wiley, New York, 1997 Google Scholar

  • [2] Andrews G.E., Askey R., Roy R., Special Functions Encyclopedia of Mathemaics and its Application 71, Cambridge University Press, 1999 Google Scholar

  • [3] Carlson B.C., Special Functions of Applied Mathemaics, Academic Press, New York, 1977 Google Scholar

  • [4] Diaz R., Pariguan E., On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Mathematics, 2007, 15(2), 179- 192 Google Scholar

  • [5] Kokologiannaki C.G., Properties and inequalities of generalized k-gamma, beta and zeta functions, International Journal of Contemp, Math. Sciences, 2010, 5(14), 653-660 Google Scholar

  • [6] Kokologiannaki C.G., Krasniqi V., Some properties of k-gamma function, LE MATHEMATICS, 2013, LXVIII, 13-22 Google Scholar

  • [7] Krasniqi V., A limit for the k-gamma and k-beta function, Int. Math. Forum, 2010, 5(33), 1613-1617 Google Scholar

  • [8] Mansoor M., Determining the k-generalized gamma function Γk(x), by functional equations, International Journal Contemp. Math. Sciences, 2009, 4(21), 1037-1042 Google Scholar

  • [9] Mubeen S., Habibullah G.M., An integral representation of some k-hypergeometric functions, Int. Math. Forum, 2012, 7(4), 203- 207 Google Scholar

  • [10] Mubeen S., Habibullah G.M., k-Fractional integrals and applications, International Journal of Mathematics and Science, 2012, 7(2), 89-94 Google Scholar

  • [11] Mubeen S., Rehman A., Shaheen F., Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 2014, 4, 371-379 Google Scholar

  • [12] Rainville E.D., Special Functions, The Macmillan Company, New Yark(USA), 1960 Google Scholar

  • [13] Rudin W., Real and Complex Analysis, 2nd edition McGraw-Hill, New York, 1974 Google Scholar

About the article

Received: 2014-05-26

Accepted: 2015-02-03

Published Online: 2015-05-08

Citation Information: Open Mathematics, Volume 13, Issue 1, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0030.

Export Citation

©2015 Abdur Rehman et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yuan He, Serkan Araci, and H. M. Srivastava
The Ramanujan Journal, 2016

Comments (0)

Please log in or register to comment.
Log in