[1] Anderson G.D., Vamanmurthy M.K., Vuorinen M.K., Conformal Invarients, Inequalities and Quasiconformal Maps, Wiley, New
York, 1997
Google Scholar

[2] Andrews G.E., Askey R., Roy R., Special Functions Encyclopedia of Mathemaics and its Application 71, Cambridge University
Press, 1999
Google Scholar

[3] Carlson B.C., Special Functions of Applied Mathemaics, Academic Press, New York, 1977
Google Scholar

[4] Diaz R., Pariguan E., On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Mathematics, 2007, 15(2), 179-
192
Google Scholar

[5] Kokologiannaki C.G., Properties and inequalities of generalized k-gamma, beta and zeta functions, International Journal of
Contemp, Math. Sciences, 2010, 5(14), 653-660
Google Scholar

[6] Kokologiannaki C.G., Krasniqi V., Some properties of k-gamma function, LE MATHEMATICS, 2013, LXVIII, 13-22
Google Scholar

[7] Krasniqi V., A limit for the k-gamma and k-beta function, Int. Math. Forum, 2010, 5(33), 1613-1617
Google Scholar

[8] Mansoor M., Determining the k-generalized gamma function Γ_{k}(x), by functional equations, International Journal Contemp.
Math. Sciences, 2009, 4(21), 1037-1042
Google Scholar

[9] Mubeen S., Habibullah G.M., An integral representation of some k-hypergeometric functions, Int. Math. Forum, 2012, 7(4), 203-
207
Google Scholar

[10] Mubeen S., Habibullah G.M., k-Fractional integrals and applications, International Journal of Mathematics and Science, 2012,
7(2), 89-94
Google Scholar

[11] Mubeen S., Rehman A., Shaheen F., Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 2014, 4, 371-379
Google Scholar

[12] Rainville E.D., Special Functions, The Macmillan Company, New Yark(USA), 1960
Google Scholar

[13] Rudin W., Real and Complex Analysis, 2nd edition McGraw-Hill, New York, 1974
Google Scholar

## Comments (0)