[1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEE
Trans. Signal Process., 2006, 54, 1341–1350.
CrossrefGoogle Scholar

[2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated by
polynomials, IEEE Trans. Signal Process., 2008, 56, 492–504.
CrossrefWeb of ScienceGoogle Scholar

[3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112.
CrossrefGoogle Scholar

[4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556.
CrossrefGoogle Scholar

[5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, Mathematical
Modeling and Analysis, 2006, 11, 399–412.
Google Scholar

[6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse
Problems, 2013, 29, 025001.
CrossrefWeb of ScienceGoogle Scholar

[7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispaced
samples, SIAM Review, 2011, 53, 308–314.
CrossrefWeb of ScienceGoogle Scholar

[8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification of
skeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747.
Web of ScienceCrossrefGoogle Scholar

[9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224–
243.
Google Scholar

[10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages,
Computer J., 1972, 15, 156–159.
Google Scholar

[11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71.
CrossrefGoogle Scholar

[12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2, http://www.comlab.ox.ac.uk/chebfun/, Oxford University,
2008.
Google Scholar

[13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3,
117–127.
Google Scholar

[14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing,
1995, 16, 119–138.
Google Scholar

[15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation,
1989, 34, 89–93.
Google Scholar

[16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis,
Commun. Comput. Phys., 2007, 2, 87–98.
Google Scholar

[17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic
Computation, 2009, 44, 943–959.
Google Scholar

[18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing,
1992, 42, 2292–2303.
CrossrefGoogle Scholar

[19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal of
Mathematical Sciences, 1995, 76, 2793–2915.
Google Scholar

[20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51.
CrossrefGoogle Scholar

[21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224.
Google Scholar

[22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium
(ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27.
Google Scholar

[23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.