[1] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct.
Anal., 1994, 122(2), 519-543
Google Scholar

[2] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14,
349-381
CrossrefGoogle Scholar

[3] Arcoya D., Boccardo L., Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential
Integral Equations, 2013, 26, 119-128
Google Scholar

[4] Arcoya D., Moreno-Merida L., Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal.,
2014, 95, 281-291
Google Scholar

[5] Barrios B., Colorado E., Servadei R., Soria F., A critical fractional equation with concave-convex nonlinearities, Ann. Inst.
H. Poincaré Anal. Non Linéaire (in press), DOI: 10.1016/j.anihpc.2014.04.003
CrossrefGoogle Scholar

[6] Barrios B., Medina M., Peral I., Some remarks on the solvability of non local elliptic problems with the Hardy potential. Commun.
Contemp. Math., 2014, 16, 4
Web of ScienceCrossrefGoogle Scholar

[7] Boccardo L., Orsina L., Semilinear elliptic equations with singular nolinearities, Calc. Var. Partial Differential Equations, 2010,
37(3-4), 363-380
Google Scholar

[8] Boccardo L., A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal., 2012, 75, 4436-4440
Google Scholar

[9] Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponent, Nonlinear Anal., 1995, 24, 1639-1848
Google Scholar

[10] Brezis H. , Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math., 1992, 74, 87–106
Google Scholar

[11] Brezis H., Nirenberg L., H1 versus C1 local minimizers, C. R. Acad. Sci. Paris t., 1993, 317, 465-472
Google Scholar

[12] Canino A., Degiovanni M., A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis,
2004, 11(1), 147-162
Google Scholar

[13] Crandall M. G., Rabinowitz P. H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential
Equations, 1977, 2, 193-222
Google Scholar

[14] Coclite M. M., Palmieri G., On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 1989, 14(10),
1315-1327
Google Scholar

[15] Dávila J., A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 2001, 183,
231-244
Google Scholar

[16] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5),
521-573
Web of ScienceGoogle Scholar

[17] García Azorero J. P., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a non-symmetric term,
Transactions American Mathematical Society, 1991, 323(2), 877-895
Google Scholar

[18] García Azorero J. P., Manfredi J. J., Peral I., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear
elliptic equations, Commun. Contemp. Math., 2000, 2(3), 385-404
CrossrefGoogle Scholar

[19] Ghergu M., Radulescu V., Singular elliptic problems with convection term in anisotropic media, Mathematical analysis and
applications, 2006, 74-89, AIP Conf. Proc., 835, Amer. Inst. Phys., Melville, NY
Google Scholar

[20] Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré
Anal. Non Linéaire, 1989, 6(5), 321-330
Google Scholar

[21] Hirano N., Saccon C., Shioji N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem,
J. Differential Equations, 2008, 245, 1997-2037
Google Scholar

[22] Greco A., Servadei R., Hopf’s lemma and constrained radial symmetry for the fractional laplacian, preprint
Google Scholar

[23] Lair A. V., Shaker A. W., Classical and Weak Solutions of a Singular Semilinear Elliptic Problem, Journal of Mathematical Analysis
and Applications, 1997, 211, 371-385
Google Scholar

[24] Landkof N., Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-
Verlag, New York-Heidelberg, 1972
Google Scholar

[25] Lazer A. C., McKenna P. J., On a Singular Nonlinear Elliptic Boundary-Value Problem, Proceedings of the American Mathematical
Society, 1991, 111(3), 721-730
Google Scholar

[26] Lazer A. C., McKenna P. J., On Singular Boundary Value Problems for the Monge-Ampère Operator, Journal of Mathematical
Analysis and Applications, 1996, 197, 341-362
Google Scholar

[27] Leonori T., Peral I., Primo A., Soria F., Basic estimates for solution of elliptic and parabolic equations for a class of nonlocal
operators, preprint
Google Scholar

[28] Ros-Oton X., Serra J., The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. (9),
2014, 101(3), 275-302
Google Scholar

[29] Servadei R., Valdinoci E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 2012, 389(2), 887-898
Web of ScienceGoogle Scholar

[30] Servadei R., Valdinoci E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2013, 33(5),
2105-2137
Web of ScienceGoogle Scholar

[31] Silvestre L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 2007,
60(1), 67-112
Web of ScienceGoogle Scholar

[32] Stampacchia G., Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst.
Fourier (Grenoble), 1965, 15, fasc. 1, 189-258
CrossrefGoogle Scholar

[33] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton
University Press, Princeton, N.J. 1970
Google Scholar

[34] Stuart C. A., Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal.,
1991, 113, 65-96
CrossrefGoogle Scholar

[35] Zhang Z., Boundary behavior of solutions to some singular elliptic boundary value problems. Nonlinear Anal., 2008, 69(7),
2293-2302
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.