[1] T. Amdeberhan and V. H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, Ramanujan J. 18
(2009), no. 1, 91–102.
Web of ScienceCrossrefGoogle Scholar

[2] T. Amdeberhan,O. Espinosa, I. Gonzalez, M. Harrison, V. H. Moll and A. Straub, Ramanujan’s master theorem, Ramanujan J. 29
(2012), no. 1-3, 103–120.
Web of ScienceCrossrefGoogle Scholar

[3] P. E. Appell and J. Kampé de Férit, Fonctions Hypergeometriques et Polynomes d’Hermite, Gauthier-Villars, Paris, 1926.
Google Scholar

[4] D. Babusci, G. Dattoli, G. H. E. Duchamp, Góska and K. A. Penson, Definite integrals and operational methods, Appl. Math.
Comput. 219 (2012), no. 6, 3017–3021.
Web of ScienceGoogle Scholar

[5] D. Babusci and G. Dattoli, On Ramanujan Master Theorem, arXiv:1103.3947 Web of ScienceGoogle Scholar

[math-ph].
Google Scholar

[6] D. Babusci, G. Dattoli, B. Germano, M. R. Martinelli and P.E. Ricci, Integrals of Bessel functions, Appl. Math. Lett. 26 (2013),
no. 3, 351–354.
CrossrefGoogle Scholar

[7] B. C. Berndt, Ramanujan’s notebooks. Part I, Springer, New York, 1985.
Google Scholar

[8] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155–178.
Google Scholar

[9] K. Górska, D. Babusci, G. Dattoli, G. H. E. Duchamp and K. A. Penson, The Ramanujan master theorem and its implications for
special functions, Appl. Math. Comput. 218 (2012), no. 23, 11466–11471.
Web of ScienceGoogle Scholar

[10] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, fifth edition, Academic Press, San Diego, CA, 1996.
Google Scholar

[11] G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge Univ. Press, Cambridge,
England, 1940.
Google Scholar

[12] S. R. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35
(2012), no. 1, 179–194.
Google Scholar

[13] R. Mullin and G.-C. Rota. On the foundations of combinatorial theory III. Theory of binomial enumeration. In B. Harris, editor,
Graph theory and its applications, Academic Press, 1970, 167–213.
Google Scholar

[14] G.-C. Rota. The number of partitions of a set. Amer. Math. Monthly, (1964),no. 71, 498–504.
CrossrefGoogle Scholar

[15] G.-C. Rota. Finite operator calculus. Academic Press, New York, 1975.
Google Scholar

[16] G.-C. Rota and B.D. Taylor. An introduction to the umbral calculus. In H.M. Srivastava and Th.M. Rassias, editors, Analysis,
Geometry and Groups: A Riemann Legacy Volume, Palm Harbor, Hadronic Press, 1993, 513–525.
Google Scholar

[17] G.-C. Rota and B.D. Taylor. The classical umbral calculus. SIAM J. Math. Anal.,(1994),no 25, 694–711.
Google Scholar

[18] S. Roman, The Umbral Calculus (Academic Press, INC, Orlando, 1984).
Google Scholar

[19] H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications,
Horwood, Chichester, 1984.
Google Scholar

[20] F. G. Tricomi, Funzioni ipergeometriche confluenti (Italian), Ed. Cremonese, Roma, 1954.
Google Scholar

[21] N. Yagmur and H. Orhan, Starlikeness and convexity of generalized Struve functions, Abstr. Appl. Anal. 2013, Art. ID 954513, 6
pp.
Web of ScienceGoogle Scholar

[22] H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29
(1962), 51–63.
CrossrefGoogle Scholar

[23] G. Maroscia and P. E. Ricci, Hermite-Kampé de Fériet polynomials and solutions of boundary value problems in the half-space,
J. Concr. Appl. Math. 3 (2005), no. 1, 9–29.
Google Scholar

[24] G. Dattoli et al., Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical
problems in classical and quantum mechanics and quantum field theory, Riv. Nuovo Cimento Soc. Ital. Fis. (4) 20 (1997), no. 2,
3–133.
Google Scholar

[25] G. Dattoli, P. E. Ricci and C. Cesarano, Monumbral polynomials and the associated formalism, Integral Transforms Spec. Funct.
13 (2002), no. 2, 155–162.
Google Scholar

[26] G. Dattoli, P. E. Ricci and C. Cesarano, Beyond the monomiality: the monumbrality principle, J. Comput. Anal. Appl. 6 (2004),
no. 1, 77–83.
Google Scholar

[27] C. Cesarano, D. Assante, A note on Generalized Bessel Functions, International Journal of Mathematical Models and Methods in
Applied Sciences, vol. 7, p. 625–629
Google Scholar

[28] G. Dattoli, C. Cesarano and D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput. 134 (2003), no. 2-3, 595–605.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.