## Abstract

We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.

Show Summary Details# Only 3-generalized metric spaces
have a compatible symmetric topology

#### Open Access

## Abstract

## References

## About the article

## Citing Articles

*Journal of Inequalities and Applications*, 2017, Volume 2017, Number 1*Fixed Point Theory and Applications*, 2017, Volume 2017, Number 1*Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, 2017*Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, 2017*Journal of Inequalities and Applications*, 2016, Volume 2016, Number 1

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Tomonari Suzuki / Badriah Alamri / Misako Kikkawa

We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.

Keywords: ʋ-generalized metric space; Metrizability; Topology; Symmetrizable; Semimetrizable

[1] B. Alamri, T. Suzuki and L. A. Khan, Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in ʋ-generalized metric spaces, J. Funct. Spaces, 2015, Art. ID 709391, 6 pp. Web of ScienceGoogle Scholar

[2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. MR1771669 Google Scholar

[3] G. Gruenhage, “Generalized metric spaces” in Handbook of set-theoretic topology, 1984, pp. 423–501, North-Holland, Amsterdam. MR0776629 Google Scholar

[4] Z. Kadelburg and S. Radenovi´c, On generalized metric spaces: A survey, TWMS J. Pure Appl. Math., 5 (2014), 3–13. Google Scholar

[5] W. A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl., 2013, 2013:129. MR3068651 Web of ScienceGoogle Scholar

[6] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098, 5 pp. Web of ScienceGoogle Scholar

[7] S. Willard, General Topology, Dover (2004). MR2048350 Google Scholar

**Received**: 2015-01-27

**Accepted**: 2015-08-03

**Published Online**: 2015-09-04

**Citation Information: **Open Mathematics, Volume 13, Issue 1, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0048.

©2015 Tomonari Suzuki et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Tomonari Suzuki

[2]

Tomonari Suzuki

[3]

Nguyen Van Dung and Vo Thi Le Hang

[4]

Tomonari Suzuki

[5]

Tomonari Suzuki

## Comments (0)