[1] J. Casas, Obstructions to Lie-Rinehart Algebra Extensions. Algebra Colloq. 18 (2011), 83-104.
Web of ScienceGoogle Scholar

[2] J. Casas, M. Ladra, T. Pirashvili, Crossed modules for Lie-Rinehart algebras. J. Algebra 274 (2004), 192-201.
Web of ScienceGoogle Scholar

[3] L. Chen, D. Meng, B. Ren, On quasi-toral restricted Lie algebras. Chinese Ann. Math. Ser B 26 (2005), 207-218.
CrossrefGoogle Scholar

[4] B. Chew, On the commutativity of restricted Lie algebras. Proc. Amer. Math. Soc. 16 (1965), 547.
Google Scholar

[5] Z. Chen, Z. Liu, D. Zhong, Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra 215 (2011), 1270-1283.
Web of ScienceGoogle Scholar

[6] I. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer group. Adv. Math. 231 (2012), 2573-2592.
Web of ScienceGoogle Scholar

[7] I. Dokas, J. Loday, On restricted Leibniz algebras. Comm. Algebra 34 (2006), 4467-4478.
Google Scholar

[8] R. Farnsteiner, Conditions for the commutativity of restricted Lie algebras. Heidelberg and New York, 1967.
Google Scholar

[9] R. Farnsteiner, Note on Frobenius extensions and restricted Lie superalgebras. J. Pure Appl. Algebra 108 (1996), 241-256.
Google Scholar

[10] R. Farnsteiner, Restricted Lie algebras with semilinear p-mapping. Amer. Math. Soc. 91 (1984), 41-45.
Google Scholar

[11] J. Herz, Pseudo-alg J ebras de Lie. C. R. Acad. Sci. paris 236 (1953), 1935-1937.
Google Scholar

[12] T. Hodge, Lie triple system, restricted Lie triple system and algebraic groups. J. Algebra 244 (2001), 533-580.
Google Scholar

[13] J. Huebschmann, Poisson cohomology and quantization. J. Reine Angew. Math. 408 (1990), 57-113.
Google Scholar

[14] N. Jacobson, Lie algebras. Dover., Publ. New York, 1979.
Google Scholar

[15] R. Palais, The cohomology of Lie rings. Amer. Math. Soc., Providence, R. I., Proc. Symp. Pure Math. (1961), 130-137.
CrossrefGoogle Scholar

[16] G. Rinehart, Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195-222.
Google Scholar

[17] H. Strade, R. Farnsteiner, Modular Lie algebras and their representations. New York: Marcel Dekker Inc. 300 (1988).Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.