Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1 (Sep 2015)

Issues

On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method

Haci Mehmet Baskonus
  • Corresponding author
  • Faculty of Engineering, Department of Computer Engineering, Tunceli University, Tunceli, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hasan Bulut
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/math-2015-0052

Abstract

In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L maximum nodal norm to evaluate the accuracy of method used in this paper.

Keywords: Fractional Adams-Bashforth-Moulton method; Fractional calculus; Fractional nonlinear ordinary differential equation

References

  • [1] J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, Journal of Computational Physics, 238(2013), 154-168, 2013.Google Scholar

  • [2] G.C. Wu, D. Baleanu and Z.G. Deng, Variational iteration method as a kernel constructive technique, Applied Mathematical Modelling, 39(15), 4378-4384, 2015.CrossrefWeb of ScienceGoogle Scholar

  • [3] Z. F. Kocak, H. Bulut, and G. Yel, The solution of fractional wave equation by using modified trial equation method and homotopy analysis method, AIP Conference Proceedings, 1637, 504-512, 2014.Google Scholar

  • [4] A. Esen, Y. Ucar, N. Yagmurlu and O. Tasbozan, A galerkin finite element method to solve fractional diffusion and fractional Diffusion-Wave equations, Mathematical Modelling and Analysis, 18(2), 260-273, 2013.Google Scholar

  • [5] D. Baleanu, B. Guvenc and J.A. Tenreiro-Machado, New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010.Google Scholar

  • [6] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Mathematics of Computation, 45, 463-469, 1985.Google Scholar

  • [7] P. Goswami and F.B.M. Belgacem, Solving Special fractional Differential equations by Sumudu transform, AIP Conference. Proceedings 1493, 111-115, 2012.Google Scholar

  • [8] A. Atangana, Convergence and Stability Analysis of A Novel Iteration Method for Fractional Biological Population Equation, Neural Computing and Applications, 25(5), 1021-1030, 2014.Google Scholar

  • [9] R.S. Dubey, B. Saad, T. Alkahtani and A. Atangana, Analytical Solution of Space-Time Fractional Fokker-Planck Equation by Homotopy Perturbation Sumudu Transform Method, Mathematical Problems in Engineering, 2014, Article ID 780929, 7 pages, 2014.Google Scholar

  • [10] S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numerical Algorithms, 54(4), 521-532, 2010.CrossrefWeb of ScienceGoogle Scholar

  • [11] L. Song and H. Zhang, Solving the fractional BBM-Burgers equation using the homotopy analysis method, Chaos Solitons Fractals, 40, 1616-1622, 2009.Web of ScienceCrossrefGoogle Scholar

  • [12] A. Atangana, Numerical solution of space-time fractional derivative of groundwater flow equation, Proceedings of the International Conference of Algebra and Applied Analysis, 6(2), 20 pages, 2012.Google Scholar

  • [13] H. Jafari and S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Physics Letters A, 370(5-6), 388-396, 2007.Web of ScienceGoogle Scholar

  • [14] Q.K. Katatbeh and F.B.M. Belgacem, Applications of the Sumudu Transform to Fractional Diffirential Equations, Nonlinear Studies, 18(1), 99-112, 2011.Google Scholar

  • [15] K.B. Oldham and J. Spanier, The Fractional Calculus. Academic, New York, 1974.Google Scholar

  • [16] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.Google Scholar

  • [17] V. E. Tarasov, Fractional Dynamics; Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, USA, 2010.Google Scholar

  • [18] C. Li and G. Peng, Chaos in Chen’s system with a fractional order, Chaos, Solitons & Fractals, 22, 443-450, 2004.CrossrefGoogle Scholar

  • [19] C. Li and W. Deng, Chaos synchronization of fractional-order differential systems, International Journal of Modern Physics B, 20, 791-803, 2006.CrossrefGoogle Scholar

  • [20] K. Diethelm, N.J. Ford, A.D. Freed and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Computer Methods in Applied Mechanics and Engineering, 194, 743-773, 2005.Google Scholar

  • [21] R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, International Journal of Computer Mathematics, 87(10), 2281-2290, 2010.Web of ScienceGoogle Scholar

  • [22] K. Diethelm, N.J. Ford and A. D. Freed, A predictor corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22, 2002.CrossrefGoogle Scholar

  • [23] K. Diethelm, N.J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36, 31-52, 2004.Google Scholar

  • [24] K. Diethelm and N.J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 229-248, 2002.Google Scholar

  • [25] I. Petras, Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab in Engineering Education and Research using Matlab, In Tech, Rijeka, Croatia, 239-264, 2011.Google Scholar

  • [26] A. Atangana, Exact solution of the time-fractional underground water flowing within a leaky aquifer equation Vibration and Control, 1-8, 2014.Google Scholar

  • [27] K.A. Gepreel, The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations, Applied Mathematics Letters, 24(8), 1428-1434, 2011.CrossrefWeb of ScienceGoogle Scholar

  • [28] A. Atangana and D. Baleanu, Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations within Sumudu transform, Abstract and Applied Analysis, 9 pages, 2013.Google Scholar

  • [29] A. Atangana and N. Bildik, The Use of Fractional Order Derivative to Predict the Groundwater Flow, Mathematical Problems in Engineering, 2013, Article ID 543026, 9 pages, 2013.Google Scholar

  • [30] Z. Hammouch and T. Mekkaoui, Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions, International Journal of Applied Mathematical Research, 1, 206-212, 2012.Google Scholar

  • [31] K. Diethelm and A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, in: Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz- Billing-Preis 1998, eds. S. Heinzel and T. Plesser (Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999) pp. 57-71.Google Scholar

  • [32] H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut, Active Control of a Chaotic Fractional Order Economic System, Entropy, 17, 5771-5783, 2015.Web of ScienceCrossrefGoogle Scholar

  • [33] Z. Hammouch and T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag-Leffler stability, Nonlinear Studies, 2015, To appear.Google Scholar

  • [34] R.S. Dubey, P. Goswami and F.B.M. Belgacem, Generalized Time-Fractional Telegraph Equation Analytical Solution by Sumudu and Fourier, Journal of Fractional Calculus and Applications, 5(2), 52-58, 2014.Google Scholar

About the article

Received: 2015-06-19

Accepted: 2015-08-03

Published Online: 2015-09-25


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0052.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Badr Saad T Alkahtani, Ilknur Koca, and Abdon Atangana
Advances in Mechanical Engineering, 2017, Volume 9, Number 8, Page 168781401770556
[2]
Mourad S. Semary, Hany N. Hassan, and Ahmed G. Radwan
Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017
[3]
Qiuyan Jin, Tiecheng Xia, and Jinbo Wang
Journal of Applied Mathematics and Physics, 2017, Volume 05, Number 04, Page 844
[4]
Sadia Lodhi, Muhammad Anwaar Manzar, and Muhammad Asif Zahoor Raja
Neural Computing and Applications, 2017
[6]
Angel Plastino and Roseli Wedemann
Entropy, 2017, Volume 19, Number 2, Page 60
[7]
Antonio Coronel-Escamilla, José Gómez-Aguilar, Dumitru Baleanu, Teodoro Córdova-Fraga, Ricardo Escobar-Jiménez, Victor Olivares-Peregrino, and Maysaa Qurashi
Entropy, 2017, Volume 19, Number 2, Page 55
[8]
Naveed Ishtiaq Chaudhary, Muhammad Asif Zahoor Raja, Muhammad Saeed Aslam, and Naseer Ahmed
Neural Computing and Applications, 2016
[9]
Zainab E. Abdulnaby, Rabha W. Ibrahim, and Adem Kılıçman
SpringerPlus, 2016, Volume 5, Number 1
[10]
A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, and G.V. Guerrero-Ramírez
Chaos, Solitons & Fractals, 2016, Volume 91, Page 248

Comments (0)

Please log in or register to comment.
Log in