[1] Treumann, R. A., Theory of super-diffusion for the magnetopause, Geophys. Res. Lett., 1997, 24, 1727–1730
CrossrefGoogle Scholar

[2] Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al., Revisiting Lévy flight search
patterns of wandering albatrosses, bumblebees and deer, 2007, Nature, 449, 1044–1048
Web of ScienceGoogle Scholar

[3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour.
Res., 2000, 36, 1403–1412
CrossrefGoogle Scholar

[4] Podlubny, I., Fractional differential equations, Academic Press Inc., San Diego, CA, 1999
Google Scholar

[5] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and
nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 2013, 23, 493–540
CrossrefGoogle Scholar

[6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., Analysis and Approximation of Nonlocal Diffusion Problems with Volume
Constraints, SIAM Rev., 2012, 54, 667–696
CrossrefWeb of ScienceGoogle Scholar

[7] Meerschaert, M. M., Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput.
Appl. Math., 2004, 172, 65–77
Google Scholar

[8] Deng, W. H., Chen, M., Efficient numerical algorithms for three-dimensional fractional partial diffusion equations, J. Comp. Math.,
2014, 32, 371–391
CrossrefGoogle Scholar

[9] Tadjeran, C., Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion
equation, J. Comput. Phys., 2007, 220, 813–823
Google Scholar

[10] Tadjeran, C., Meerschaert, M. M., Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion
equation, J. Comput. Phys., 2006, 213, 205–213
Google Scholar

[11] Tian, W., Zhou, H., Deng, W., A class of second order difference approximations for solving space fractional diffusion equations,
Math. Comp., 2015, 84, 1703–1727
CrossrefGoogle Scholar

[12] Zhou, H., Tian, W., Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput.,
2013, 56, 45–66
CrossrefGoogle Scholar

[13] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 2015,
293, 104–114
Web of ScienceGoogle Scholar

[14] Bhrawy, A. H., Zaky, M.A., Van Gorder, R.A., A space-time Legendre spectral tau method for the two-sided space-time Caputo
fractional diffusion-wave equation, Numer. Algorithms, 2015 (in press), DOI: 10.1007/s11075-015-9990-9
CrossrefGoogle Scholar

[15] Nochetto, R., Otárola, E., Salgado, A., A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis,
Found. Comput. Math., 2014, 1–59
Google Scholar

[16] Huang, J., Nie, N., Tang, Y., A second order finite difference-spectral method for space fractional diffusion equations, Sci. Chin.
Math., 2014, 57, 1303–1317
CrossrefGoogle Scholar

[17] Doha, E., Bhrawy, A., Ezz-Eldien, S., Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau
method, Cent. Eur. J. of Phys., 2013, 11, 1494–1503
Web of ScienceGoogle Scholar

[18] Bhrawy, A. H., Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial
differential equations, J. Comput. Phys., 2015, 281, 876–895
Google Scholar

[19] Bhrawy, A. H., Zaky, M.A., Machado, J. T., Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo
fractional advection-dispersion equation, J. Vib. Control, 2015 (in press), DOI: 10.1177/107754631456683
CrossrefGoogle Scholar

[20] Bhrawy, A. H., Baleanu, D., A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion
equations with variable coefficients, Rep. Math. Phys., 2013, 72, 219–233
Web of ScienceCrossrefGoogle Scholar

[21] Xu, S., Ling, X., Cattani, C., Xie, G., Yang, X., Zhao, Y., Local fractional Laplace variational iteration method for nonhomogeneous
heat equations arising in fractal heat flow, Math. Probl. Eng., 2014, Art. ID 914725
Web of ScienceGoogle Scholar

[22] Yang, A., Li, J., Srivastava, H. M., Xie, G., Yang, X., Local fractional Laplace variational iteration method for solving linear partial
differential equations with local fractional derivative, Discrete Dyn. Nat. Soc., 2014, Art. ID 365981
Web of ScienceGoogle Scholar

[23] Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal.,
2005, 8, 323–341
Google Scholar

[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier Science B.V.,
Amsterdam, 2006
Google Scholar

[25] Miller, K. S., Ross, B., An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc., New
York, 1993
Google Scholar

[26] Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon,
1993
Google Scholar

[27] Atangana, A., Secer, A., A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr.
Appl. Anal., 2013, DOI:10.1155/2013/27968
CrossrefGoogle Scholar

[28] Hilfer, R., Threefold Introduction to Fractional Derivatives, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008
Google Scholar

[29] Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives,
Appl. Math. Model., 2010, 34, 200–218
Web of ScienceCrossrefGoogle Scholar

[30] Shen, S., Liu, F., Anh, V., Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection-dispersion
equation, IMA J. Appl. Math., 2008, 73, 850–872
Web of ScienceGoogle Scholar

[31] Adams, R. A., Fournier, J. J. F., Sobolev spaces, Academic Press, Amsterdam, 2003
Google Scholar

[32] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000
Google Scholar

[33] Wang, H. and Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci.
Comput., 2012, 34, A2444–A2458
Web of ScienceGoogle Scholar

[34] Bonito, A., Pasciak, J. E., Numerical Approximation of Fractional Powers of Elliptic Operators, Math. Comp., 2015, 84, 2083–2110
CrossrefGoogle Scholar

[35] Szymczak, P., Ladd, A. J. C., Boundary conditions for stochastic solutions of the convection-diffusion equation, Phys. Rev. E,
2003, 68, 12
Google Scholar

[36] Baeumer, B., Kovács, M., Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math.
Appl., 2008, 55, 2212–2226
CrossrefGoogle Scholar

[37] Evans, L. C., Partial differential equations, American Mathematical Society, Providence, RI, 1998
Google Scholar

## Comments (0)