Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1 (Sep 2015)

Issues

A finite difference method for fractional diffusion equations with Neumann boundary conditions

Béla J. Szekeres
  • Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, H-1117, Budapest, Pázmány P. s. 1/C, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferenc Izsák
  • Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, H-1117, Budapest, Pázmány P. s. 1/C, Hungary
  • MTA-ELTE NumNet Research Group, Eötvös Loránd University, 1117 Budapest, Pázmány P. stny. 1C, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/math-2015-0056

Abstract

A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved.

Keywords: Fractional order diffusion; Grünwald–Letnikov formula; Non-local derivative; Neumann boundary conditions; Implicit Euler scheme

References

  • [1] Treumann, R. A., Theory of super-diffusion for the magnetopause, Geophys. Res. Lett., 1997, 24, 1727–1730 CrossrefGoogle Scholar

  • [2] Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, 2007, Nature, 449, 1044–1048 Web of ScienceGoogle Scholar

  • [3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 2000, 36, 1403–1412 CrossrefGoogle Scholar

  • [4] Podlubny, I., Fractional differential equations, Academic Press Inc., San Diego, CA, 1999 Google Scholar

  • [5] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 2013, 23, 493–540 CrossrefGoogle Scholar

  • [6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints, SIAM Rev., 2012, 54, 667–696 CrossrefWeb of ScienceGoogle Scholar

  • [7] Meerschaert, M. M., Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 2004, 172, 65–77 Google Scholar

  • [8] Deng, W. H., Chen, M., Efficient numerical algorithms for three-dimensional fractional partial diffusion equations, J. Comp. Math., 2014, 32, 371–391 CrossrefGoogle Scholar

  • [9] Tadjeran, C., Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 2007, 220, 813–823 Google Scholar

  • [10] Tadjeran, C., Meerschaert, M. M., Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 2006, 213, 205–213 Google Scholar

  • [11] Tian, W., Zhou, H., Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 2015, 84, 1703–1727 CrossrefGoogle Scholar

  • [12] Zhou, H., Tian, W., Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 2013, 56, 45–66 CrossrefGoogle Scholar

  • [13] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 2015, 293, 104–114 Web of ScienceGoogle Scholar

  • [14] Bhrawy, A. H., Zaky, M.A., Van Gorder, R.A., A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms, 2015 (in press), DOI: 10.1007/s11075-015-9990-9 CrossrefGoogle Scholar

  • [15] Nochetto, R., Otárola, E., Salgado, A., A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis, Found. Comput. Math., 2014, 1–59 Google Scholar

  • [16] Huang, J., Nie, N., Tang, Y., A second order finite difference-spectral method for space fractional diffusion equations, Sci. Chin. Math., 2014, 57, 1303–1317 CrossrefGoogle Scholar

  • [17] Doha, E., Bhrawy, A., Ezz-Eldien, S., Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method, Cent. Eur. J. of Phys., 2013, 11, 1494–1503 Web of ScienceGoogle Scholar

  • [18] Bhrawy, A. H., Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876–895 Google Scholar

  • [19] Bhrawy, A. H., Zaky, M.A., Machado, J. T., Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation, J. Vib. Control, 2015 (in press), DOI: 10.1177/107754631456683 CrossrefGoogle Scholar

  • [20] Bhrawy, A. H., Baleanu, D., A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Rep. Math. Phys., 2013, 72, 219–233 Web of ScienceCrossrefGoogle Scholar

  • [21] Xu, S., Ling, X., Cattani, C., Xie, G., Yang, X., Zhao, Y., Local fractional Laplace variational iteration method for nonhomogeneous heat equations arising in fractal heat flow, Math. Probl. Eng., 2014, Art. ID 914725 Web of ScienceGoogle Scholar

  • [22] Yang, A., Li, J., Srivastava, H. M., Xie, G., Yang, X., Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative, Discrete Dyn. Nat. Soc., 2014, Art. ID 365981 Web of ScienceGoogle Scholar

  • [23] Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal., 2005, 8, 323–341 Google Scholar

  • [24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 Google Scholar

  • [25] Miller, K. S., Ross, B., An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc., New York, 1993 Google Scholar

  • [26] Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993 Google Scholar

  • [27] Atangana, A., Secer, A., A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013, DOI:10.1155/2013/27968 CrossrefGoogle Scholar

  • [28] Hilfer, R., Threefold Introduction to Fractional Derivatives, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 Google Scholar

  • [29] Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34, 200–218 Web of ScienceCrossrefGoogle Scholar

  • [30] Shen, S., Liu, F., Anh, V., Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 2008, 73, 850–872 Web of ScienceGoogle Scholar

  • [31] Adams, R. A., Fournier, J. J. F., Sobolev spaces, Academic Press, Amsterdam, 2003 Google Scholar

  • [32] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000 Google Scholar

  • [33] Wang, H. and Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 2012, 34, A2444–A2458 Web of ScienceGoogle Scholar

  • [34] Bonito, A., Pasciak, J. E., Numerical Approximation of Fractional Powers of Elliptic Operators, Math. Comp., 2015, 84, 2083–2110 CrossrefGoogle Scholar

  • [35] Szymczak, P., Ladd, A. J. C., Boundary conditions for stochastic solutions of the convection-diffusion equation, Phys. Rev. E, 2003, 68, 12 Google Scholar

  • [36] Baeumer, B., Kovács, M., Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 2008, 55, 2212–2226 CrossrefGoogle Scholar

  • [37] Evans, L. C., Partial differential equations, American Mathematical Society, Providence, RI, 1998 Google Scholar

About the article

Received: 2015-03-05

Accepted: 2015-05-15

Published Online: 2015-09-25


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0056.

Export Citation

©2015 Béla J. Szekeres and Ferenc Izsák. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Abirami, P. Prakash, and K. Thangavel
International Journal of Computer Mathematics, 2017, Page 1
[2]
N. Cusimano, K. Burrage, I. Turner, and D. Kay
Applied Mathematical Modelling, 2017, Volume 42, Page 554
[3]
Béla J. Szekeres and Ferenc Izsák
Journal of Computational and Applied Mathematics, 2016, Volume 292, Page 553

Comments (0)

Please log in or register to comment.
Log in