## Abstract

We establish in this paper some Jensen’s type inequalities for functions defined by power series with nonnegative coefficients. Applications for functions of selfadjoint operators on complex Hilbert spaces are provided as well.

Show Summary Details# Inequality for power series with nonnegative
coefficients and applications

#### Open Access

## Abstract

## References

## About the article

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2017: 0.831

5-year IMPACT FACTOR: 0.836

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.450

Source Normalized Impact per Paper (SNIP) 2017: 0.829

Mathematical Citation Quotient (MCQ) 2017: 0.32

Silvestru Sever Dragomir

We establish in this paper some Jensen’s type inequalities for functions defined by power series with nonnegative coefficients. Applications for functions of selfadjoint operators on complex Hilbert spaces are provided as well.

Keywords: Jensen’s inequality; Measurable functions; Lebesgue integral; Selfadjoint operators; Functions of selfadjoint operators

[1] Agarwal R. P., Dragomir S. S., A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785–3812. Web of ScienceCrossrefGoogle Scholar

[2] Cerone P., Dragomir S. S., A refinement of the Grüss inequality and applications, Tamkang J. Math. 38 (2007), No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., 5 (2) (2002), Art. 14. Google Scholar

[3] Cheng X.-L., Sun J., Note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Art. 21. Google Scholar

[4] Dragomir S. S., A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36 (2003), no. 3, 551– 562. Preprint RGMIA Res. Rep. Coll. 5(2002), Suplement, Art. 12. [Online http://rgmia.org/v5(E).php]. Google Scholar

[5] Dragomir S. S., Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. J. Inequal. Appl. 2010, Art. ID 496821, 15 pp. CrossrefGoogle Scholar

[6] Dragomir S. S., Reverses of the Jensen inequality in terms of the first derivative and applications, Acta Math. Vietnam. 38 (2013), no. 3, 429–446. Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 71. [http://rgmia.org/papers/v14/v14a71.pdf]. CrossrefGoogle Scholar

[7] Dragomir S. S., Some reverses of the Jensen inequality with applications, Bull. Aust. Math. Soc. 87 (2013), no. 2, 177–194. Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 72. [http://rgmia.org/papers/v14/v14a72.pdf]. Google Scholar

[8] Dragomir S. S., A refinement and a divided difference reverse of Jensen’s inequality with applications, Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 74. [http://rgmia.org/papers/v14/v14a74.pdf]. Google Scholar

[9] Dragomir S. S., Ionescu N. M., Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71–78. Google Scholar

[10] Dragomir S. S., Operator Inequalities of the Jensen, Cˇ ebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6 Google Scholar

[11] Dragomir S. S., Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1 Google Scholar

[12] Helmberg G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc. -New York, 1969. Google Scholar

[13] Jensen J. L. W. V., Sur les fonctions convexes et les inegalités entre les valeurs moyennes, Acta Math., 30 (1906), 175-193. CrossrefGoogle Scholar

**Received**: 2015-07-20

**Accepted**: 2015-09-10

**Published Online**: 2015-10-19

**Citation Information: **Open Mathematics, Volume 13, Issue 1, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0061.

©2015 Silvestru Sever Dragomir. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.