Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Vespri, Vincenzo / Marano, Salvatore Angelo


IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2018: 152.31

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Inequalities of harmonic univalent functions with connections of hypergeometric functions

Janusz Sokół
  • Department of Mathematics, Rzeszów University of Technology, Al. Powsta´nców Warszawy 12, 35-959 Rzeszów, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rabha W. Ibrahim
  • Faculty of Computer Science and Information Technology, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Z. Ahmad / Hiba F. Al-Janaby
Published Online: 2015-10-21 | DOI: https://doi.org/10.1515/math-2015-0066

Abstract

Let SH be the class of functions f = h+g that are harmonic univalent and sense-preserving in the open unit disk U = { z : |z| < 1} for which f (0) = f'(0)-1=0. In this paper, we introduce and study a subclass H( α, β) of the class SH and the subclass NH( α, β) with negative coefficients. We obtain basic results involving sufficient coefficient conditions for a function in the subclass H( α, β) and we show that these conditions are also necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric functions with a subclass of harmonic univalent functions.

Keywords: Harmonic function; Analytic function; Univalent function; Unit disk

References

  • [1] Clunie J. and Sheil-Small T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 1984, 9, 3–25 Google Scholar

  • [2] Ahuja O. P. and Silverman H., Inequalities associating hypergeometric functions with planer harmonic mapping, J. Inequal Pure and Appl. Maths., 2004, 5, 1–10. Google Scholar

  • [3] Ahuja O. P., Planer harmonic convolution operators generated by hypergeometric functions, Trans. Spec. Funct., 2007, 18, 165–177. CrossrefGoogle Scholar

  • [4] Ahuja O. P., Connections between various subclasses of planer harmonic mappings involving hypergeometric functions, Appl. Math. Comput, 2008, 198, 305–316. Web of ScienceGoogle Scholar

  • [5] Ahuja O. P., Harmonic starlikeness and convexity of integral operators generated by hypergeometric series, Integ. Trans. Spec. Funct., 2009, 20(8), 629–641. CrossrefWeb of ScienceGoogle Scholar

  • [6] Ahuja O. P., Inclusion theorems involving uniformly harmonic starlike mappings and hypergeometric functions, Analele Universitatii Oradea, Fasc. Matematica, Tom XVIII, 2011, 5–18. Google Scholar

  • [7] Murugusundaramoorthy G. and Raina R. K., On a subclass of harmonic functions associated with the Wright’s generalized hypergeometric functions, Hacet. J. Math. Stat., 2009, 28(2), 129–136. Google Scholar

  • [8] Sharma P., Some Wgh inequalities for univalent harmonic analytic functions, Appl. Math, 2010, 464–469. CrossrefGoogle Scholar

  • [9] Raina R. K. and Sharma P., Harmonic univalent functions associated with Wright’s generalized hypergeometric functions, Integ. Trans. Spec. Funct., 2011, 22(8), 561–572. Web of ScienceCrossrefGoogle Scholar

  • [10] Ahuja O. P. and Sharma P., Inclusion theorems involving Wright’s generalized hypergeometric functions and harmonic univalent functions, Acta Univ. Apulensis, 2012, 32, 111–128. Google Scholar

  • [11] Avci Y. and Zlotkiewicz E., On harmonic univalent mappings, Ann. Univ. Marie Curie-Sklodowska Sect. A, 1991, 44, 1–7. Google Scholar

  • [12] Silverman H., Harmonic univalent functions with negative coefficients, J. Math. Anal. Apl., 1998, 220, 283–289. Google Scholar

  • [13] Silverman H. and Silvia E. M., Subclasses of harmonic univalent functions, New Zealand J. Math., 1999, 28, 275–284. Google Scholar

  • [14] Ahuja O. P. and Jahangiri J. M., Noshiro-Type harmonic univalent functions, Sci. Math. Jpn., 2002, 6(2), 253–259. Google Scholar

  • [15] Yalcin S.,Ozturk M. and Yamankaradeniz M., A subclass of harmonic univalent functions with negative coefficients, Appl. Math. Comput., 2003, 142, 469-–476. Web of ScienceGoogle Scholar

  • [16] AL-Khal R. A. and AL-Kharsani H.A., Harmonic hypergeometric functions, Tamkang J. Math., 2006, 37(3), 273–283. Google Scholar

  • [17] Yalcin S. and Ozturk M., A new subclass of complex harmonic functions, Math. Inequal. Appl., 2004, 7(1), 55–61. Google Scholar

  • [18] Chandrashekar R., Lee S. K. and Subramanian K. G., Hyergeometric functions and subclasses of harmonic mappings, Proceeding of the International Conference on mathematical Analysis 2010, Bangkok, 2010, 95–103. Google Scholar

  • [19] Dixit R. K.K., Pathak A. L., Powal S. and Agarwal R., On a subclass of harmonic univalent functions defined by convolution and integral convolution, I. J. Pure Appl. Math., 2011, 69(3), 255–264. Google Scholar

  • [20] Aouf M.K., Mostafa A. O., Shamandy A. and Adwan E. A., Subclass of harmonic univalent functions defined by Dziok-Srivastava operators, Le Math., 2013, LXVIII, 165–177. Google Scholar

  • [21] El-Ashwah R.M., Subclass of univalent harmonic functions defined by dual convolution, J. Inequal. Appl., 2013, 2013:537, 1–10. CrossrefWeb of ScienceGoogle Scholar

  • [22] Al-Khal R. A. and AL-Kharsani H. A., Harmonic univalent functions, J. Inequal. Pure Appl. Math., 2007, 8(2), 1–8. Google Scholar

  • [23] Nagpal S. and Ravichandran V., Univalence and convexity in one direction of the convolution of harmonic mappings, Complex Var. Elliptic Equ., 2014, 59(7), 1328–1341. Web of ScienceGoogle Scholar

  • [24] Ponnusamy S.,Rasila A. and Kaliraj A., Harmonic close-to-convex functions and minimal surfaces, Complex Var. Elliptic Equ., 2014, 59(9), 986–1002. Google Scholar

  • [25] Porwal S. and Dixit K. K., An application of hypergeometric functions on harmonic univalent functions, Bull. Math. Anal. Appl., 2010, 2(4), 97–105. Google Scholar

  • [26] Shelake G., Joshi S., Halim S., On a subclass of harmonic univalent functions defined by convolution, Acta Univ. Apulensis, 2014, 38, 251–262. Google Scholar

About the article

Received: 2015-04-01

Accepted: 2015-09-16

Published Online: 2015-10-21


Citation Information: Open Mathematics, Volume 13, Issue 1, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0066.

Export Citation

©2015 Sokół et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Saqib Hussain, Akhter Rasheed, and Maslina Darus
Journal of Function Spaces, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in