[1] Banach, S., Théorie des opérations linéaires, Chelsea Publishing company, New York, 1978
Google Scholar

[2] Ahmad, Z.U., Mursaleen, M., An application of Banach limits, Proc. Amer. Math. Soc., 1988, 103, 244-246
Google Scholar

[3] Semenov, E., Sukochev, F., Extreme points of the set of Banach limits, Positivity, 2013, 17, 163-170
Web of ScienceGoogle Scholar

[4] Semenov, E., Sukochev, F., Invariant Banach limits and applications, J. Funct. Anal., 2010, 259, 1517-1541
Web of ScienceGoogle Scholar

[5] Semenov, E., Sukochev, F., Usachev, A., Structural properties of the set of Banach limits, Dokl. Math., 2011, 84, 802-803
Web of ScienceGoogle Scholar

[6] Armario, R., García-Pacheco, F.J., Pérez-Fernández, F.J., On Vector-Valued Banach Limits, Funct. Anal. Appl., 2013, 47, 315-318
Web of ScienceGoogle Scholar

[7] Armario, R. García-Pacheco, F.J., Pérez-Fernández, F.J., Fundamental Aspects of Vector-Valued Banach Limits, Izv. Math., 2016,
80, (in press)
Google Scholar

[8] Rosenthal, H., On injective Banach spaces and the spaces C .S/, Bull. Amer. Math. Soc., 1969, 75, 824-828
Google Scholar

[9] Wolfe, J., Injective Banach spaces of continuous functions, Trans. Amer. Math. Soc., 1978, 235, 115-139
Google Scholar

[10] Lorentz, G., A contribution to the theory of divergent sequences, Acta Math., 1948, 80, 167-190
Google Scholar

[11] Boos, J., Classical and Modern Methods in summability, Oxford University Press, 2000
Google Scholar

[12] Mursaleen, M., On some new invariant matrix methods of summability, Quart. Jour. Math. Oxford, 1983, 34, 77-86
Google Scholar

[13] Mursaleen, M., On A-invariant mean and A-almost convergence, Analysis Mathematica, 2011, 37, 173-180
Web of ScienceGoogle Scholar

[14] Mursaleen, M., Applied Summability Methods, Springer Briefs, Heidelberg New York Dordrecht London, 2014
Google Scholar

[15] Raimi, R.A., Invariant means and invariant matrix methods of summability, Duke Math. J., 1963, 30, 81-94
Google Scholar

[16] Aizpuru, A., Armario, R., García-Pacheco, F.J., Pérez-Fernández, F.J., Banach limits and uniform almost summability, J. Math.
Anal. Appl., 2011, 379, 82-90
Google Scholar

[17] Aizpuru, A., Armario, R., García-Pacheco, F.J., Pérez-Fernández, F.J., Vector-Valued Almost Convergence and Classical
Properties in Normed Spaces, Proc. Indian Acad. Sci. Math., 2014, 124, 93-108
Web of ScienceGoogle Scholar

[18] García-Pacheco, F.J., Convex components and multi-slices in topological vector spaces, Ann. Funct. Anal., 2015, 6, 73-86
Web of ScienceGoogle Scholar

[19] Day, M.M., Normed linear spaces, 3rd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag,
New York-Heidelberg, 1973
Google Scholar

## Comments (0)