[1] Alexander J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 1915, 17, 12–22.
CrossrefGoogle Scholar

[2] Libera R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 1965, 16, 755–758.
CrossrefGoogle Scholar

[3] Bernardi S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 1969, 135, 429–446.
Google Scholar

[4] Miller S. S., Mocanu P. T., Reade M. O., Starlike integral operators, Pacific J. Math., 1978, 79, 157–168.
Google Scholar

[5] Miller S. S., Mocanu P. T., Classes of univalent integral operators, J. Math. Anal. Appl., 1991, 157, 147–165.
CrossrefGoogle Scholar

[6] Singh R., On Bazilevic functions, Proc. Amer. Math. Soc., 1973, 18 261–271.
Google Scholar

[7] Pascu N. N., Pescar V., On integral operators of Kim-Merkes and Pfaltz-graff, Mathematica (Cluj), 1990, 2, 185–192.
Google Scholar

[8] Pescar V., Breaz D., Some integral operators and their univalence, Acta Univ. Apulensis Math., Inform. 2008, 15, 147–152.
Google Scholar

[9] Breaz D., Breaz N., Srivastava H. M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett.,
(2009), 22, 41–44.
Web of ScienceCrossrefGoogle Scholar

[10] Breaz D., Darus M., Breaz N., Recent Studies on Univalent Integral Operators, Alba Iulia: Aeternitas, 2010.
Google Scholar

[11] Darus M., Ibrahim R. W., On subclasses of uniformly Bazilevic type functions involving generalized differential and integral
operators, FJMS, 2009, 33, 401–411.
Google Scholar

[12] Darus M., Ibrahim R. W., On inclusion properties of generalized integral operator involving Noor integral, FJMS, 2009, 33,
309–321.
Google Scholar

[13] Hernandez R., Prescribing the preschwarzian in several complex variables, Annales Academiae Scientiarum Fennicae
Mathematica, 2011, 36, 331–340.
CrossrefWeb of ScienceGoogle Scholar

[14] Ong K. W., Tan S. L., Tu Y. E., Integral operators and univalent functions, Tamkang Journal of Mathematics, 2012, 43(2),
215–221.
Google Scholar

[15] Goluzin G. M., On the majorization principle in function theory (Russian). Dokl. Akad. Nauk. SSSR, 1953, 42, 647–650.
Google Scholar

[16] Suffridge T. J., Some remarks on convex maps of the unit disk. Duke Math. J., 1970, 37, 775–777.
Google Scholar

[17] Robinson R. M., Univalent majorants, Trans. Amer. Math. Soc., 1947, 61, 1–35.
CrossrefGoogle Scholar

[18] Hallenbeck D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 1975, 52, 191–195.
CrossrefGoogle Scholar

[19] Miller S.S., Mocanu P.T., Differential subordinations and univalent function, Michig. Math. J., 1981, 28, 157–171.
CrossrefGoogle Scholar

[20] Miller S.S., Mocanu P.T., Differential subordinations and inequalities in the complex plane, J. Diff. Eqn., 1987, 67, 199–211.
Google Scholar

[21] Miller S.S., Mocanu P.T., The theory and applicatins of second-order differential subordinations, Studia Univ. Babes-Bolyai, math.,
1989, 34, 3–33.
Google Scholar

[22] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied
Mathematics, 225, Dekker, New York, 2000.
Google Scholar

[23] Miller S. S., Mocanu P. T., Subordinants of differetial superordinations, Complex Var. Theory Appl., 2003, 48, 815–826.
Google Scholar

[24] Bulboac Ma T., Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca,
2005.
Google Scholar

[25] Baricz A., Deniz E., Caglar M., Orhan H., Differential subordinations involving the generalized Bessel functions, Bull. Malays.
Math. Sci. Soc., DOI: 10.1007/s40840-014-0079-8.
CrossrefWeb of ScienceGoogle Scholar

[26] Cho N. E., Bilboaca T., Srivastava H. M., A general family of integral operators and associated subordination and superordination
properties of some special analytic function classes, Appl. Math. Comput., 2012, 219, 2278–2288.
Web of ScienceGoogle Scholar

[27] Kuroki K., Srivastava H. M., Owa S., Some applications of the principle of differential, Electron. J. Math. Anal. Appl., 2013, 1 (50),
40–46.
Google Scholar

[28] Xu Q.-H., Xiao H.-G., Srivastava H. M., Some applications of differential subordination and the Dziok-Srivastava convolution
operator, Appl. Math. Comput., 2014, 230, 496–508.
Google Scholar

[29] Ali R. M., Ravichandran V., Seenivasagan N., Differential subordination and superordination of analytic functions defined by the
Dziok-Srivastava operator, J. Franklin Inst., 2010, 347, 1762–1781.
Web of ScienceGoogle Scholar

[30] Ali R. M., Ravichandran V., Seenivasagan N., On Subordination and superordination of the multiplier transformation for
meromorphic functions, Bull. Malays. Math. Sci. Soc., 2010, 33, 311–324.
Google Scholar

[31] Ponnusamy S., Juneja O. P., Third-order differential inequalities in the complex plane, Current Topics in Analytic Function Theory,
World Scientific, Singapore, London, 1992.
Google Scholar

[32] Antonion J. A., Miller S. S., Third-order differential inequalities and subordinations in the complex plane, Complex Var. Theory
Appl., 2011, 56, 439–454.
Google Scholar

[33] Jeyaraman M. P., Suresh T. K., Third-order differential subordination of analysis functions, Acta Universitatis Apulensis, 2013, 35,
187–202.
Google Scholar

[34] Tang H., Srivastiva H. M., Li S., Ma L., Third-order differential subordinations and superordination results for meromorphically
multivalent functions associated with the Liu-Srivastava Operator, Abstract and Applied Analysis, 2014, 1–11.
Web of ScienceCrossrefGoogle Scholar

[35] Tang H., Deniz E., Third-order differential subordinations results for analytic functions involving the generalized Bessel functions,
Acta Math. Sci., 2014, 6, 1707–1719.
CrossrefWeb of ScienceGoogle Scholar

[36] Tang H., Srivastiva H. M., Deniz E., Li S., Third-order differential superordination involving the generalized Bessel functions, Bull.
Malays. Math. Sci. Soc., 2014, 1–22.
Web of ScienceGoogle Scholar

[37] Farzana H. A., Stephen B. A., Jeyaraman M. P., Third-order differential subordination of analytic function defined by functional
derivative operator, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014, 1–16.
Google Scholar

[38] B. C. Carlson and D. B. Shaffer,Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 1984, 15, 737–745.
Google Scholar

[39] Machado J. T., Discrete-time fractional-order controllers, Fractional Calculus and Applied Analysis, 2001, 4, 47–66.
Google Scholar

[40] Pu Y.-F., Zhou J.-L., Yuan X., Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement,
Image Processing, IEEE Transactions on, 2010, 19, 491–511.
Web of ScienceGoogle Scholar

[41] Jalab H. A., Ibrahim R. W., Fractional Conway polynomials for image denoising with regularized fractional power parameters,
J. Math. Imaging Vis., 2015, 51, 442–450.
Web of ScienceCrossrefGoogle Scholar

[42] Jalab H A, Ibrahim R. W., Fractional Alexander polynomials for image denoising, Signal Processing, 2015, 107, 340–354.
Google Scholar

[43] Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., Discrete fractional diffusion equation, Nonlinear Dynamics, 2015, 80, 1–6.
Google Scholar

## Comments (0)