Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year


IMPACT FACTOR 2016 (Open Mathematics): 0.682
IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454
Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1 (Oct 2015)

Issues

Third-order differential subordination and superordination involving a fractional operator

Rabha W. Ibrahim
  • Faculty of Computer Science and Information Technology, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammad Zaini Ahmad
  • Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Arau, Malaysia, E-mail: mzaini@unimap.edu.my
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiba F. Al-Janaby
  • Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Arau, Malaysia, E-mail: mzaini@unimap.edu.my
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-23 | DOI: https://doi.org/10.1515/math-2015-0068

Abstract

The third-order differential subordination and the corresponding differential superordination problems for a new linear operator convoluted the fractional integral operator with the Carlson-Shaffer operator, are investigated in this study. The new operator satisfies the required first-order differential recurrence (identity) relation. This property employs the subordination and superordination methodology. Some classes of admissible functions are determined, and these significant classes are exploited to obtain fractional differential subordination and superordination results. The new third-order differential sandwich-type outcomes are investigated in subsequent research.

Keywords: Fractional calculus; Fractional integral operator; Subordination; Superordination; Unit disk; Analytic function

References

  • [1] Alexander J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 1915, 17, 12–22. CrossrefGoogle Scholar

  • [2] Libera R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 1965, 16, 755–758. CrossrefGoogle Scholar

  • [3] Bernardi S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 1969, 135, 429–446. Google Scholar

  • [4] Miller S. S., Mocanu P. T., Reade M. O., Starlike integral operators, Pacific J. Math., 1978, 79, 157–168. Google Scholar

  • [5] Miller S. S., Mocanu P. T., Classes of univalent integral operators, J. Math. Anal. Appl., 1991, 157, 147–165. CrossrefGoogle Scholar

  • [6] Singh R., On Bazilevic functions, Proc. Amer. Math. Soc., 1973, 18 261–271. Google Scholar

  • [7] Pascu N. N., Pescar V., On integral operators of Kim-Merkes and Pfaltz-graff, Mathematica (Cluj), 1990, 2, 185–192. Google Scholar

  • [8] Pescar V., Breaz D., Some integral operators and their univalence, Acta Univ. Apulensis Math., Inform. 2008, 15, 147–152. Google Scholar

  • [9] Breaz D., Breaz N., Srivastava H. M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., (2009), 22, 41–44. Web of ScienceCrossrefGoogle Scholar

  • [10] Breaz D., Darus M., Breaz N., Recent Studies on Univalent Integral Operators, Alba Iulia: Aeternitas, 2010. Google Scholar

  • [11] Darus M., Ibrahim R. W., On subclasses of uniformly Bazilevic type functions involving generalized differential and integral operators, FJMS, 2009, 33, 401–411. Google Scholar

  • [12] Darus M., Ibrahim R. W., On inclusion properties of generalized integral operator involving Noor integral, FJMS, 2009, 33, 309–321. Google Scholar

  • [13] Hernandez R., Prescribing the preschwarzian in several complex variables, Annales Academiae Scientiarum Fennicae Mathematica, 2011, 36, 331–340. CrossrefWeb of ScienceGoogle Scholar

  • [14] Ong K. W., Tan S. L., Tu Y. E., Integral operators and univalent functions, Tamkang Journal of Mathematics, 2012, 43(2), 215–221. Google Scholar

  • [15] Goluzin G. M., On the majorization principle in function theory (Russian). Dokl. Akad. Nauk. SSSR, 1953, 42, 647–650. Google Scholar

  • [16] Suffridge T. J., Some remarks on convex maps of the unit disk. Duke Math. J., 1970, 37, 775–777. Google Scholar

  • [17] Robinson R. M., Univalent majorants, Trans. Amer. Math. Soc., 1947, 61, 1–35. CrossrefGoogle Scholar

  • [18] Hallenbeck D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 1975, 52, 191–195. CrossrefGoogle Scholar

  • [19] Miller S.S., Mocanu P.T., Differential subordinations and univalent function, Michig. Math. J., 1981, 28, 157–171. CrossrefGoogle Scholar

  • [20] Miller S.S., Mocanu P.T., Differential subordinations and inequalities in the complex plane, J. Diff. Eqn., 1987, 67, 199–211. Google Scholar

  • [21] Miller S.S., Mocanu P.T., The theory and applicatins of second-order differential subordinations, Studia Univ. Babes-Bolyai, math., 1989, 34, 3–33. Google Scholar

  • [22] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000. Google Scholar

  • [23] Miller S. S., Mocanu P. T., Subordinants of differetial superordinations, Complex Var. Theory Appl., 2003, 48, 815–826. Google Scholar

  • [24] Bulboac Ma T., Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005. Google Scholar

  • [25] Baricz A., Deniz E., Caglar M., Orhan H., Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-014-0079-8. CrossrefWeb of ScienceGoogle Scholar

  • [26] Cho N. E., Bilboaca T., Srivastava H. M., A general family of integral operators and associated subordination and superordination properties of some special analytic function classes, Appl. Math. Comput., 2012, 219, 2278–2288. Web of ScienceGoogle Scholar

  • [27] Kuroki K., Srivastava H. M., Owa S., Some applications of the principle of differential, Electron. J. Math. Anal. Appl., 2013, 1 (50), 40–46. Google Scholar

  • [28] Xu Q.-H., Xiao H.-G., Srivastava H. M., Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput., 2014, 230, 496–508. Google Scholar

  • [29] Ali R. M., Ravichandran V., Seenivasagan N., Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava operator, J. Franklin Inst., 2010, 347, 1762–1781. Web of ScienceGoogle Scholar

  • [30] Ali R. M., Ravichandran V., Seenivasagan N., On Subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc., 2010, 33, 311–324. Google Scholar

  • [31] Ponnusamy S., Juneja O. P., Third-order differential inequalities in the complex plane, Current Topics in Analytic Function Theory, World Scientific, Singapore, London, 1992. Google Scholar

  • [32] Antonion J. A., Miller S. S., Third-order differential inequalities and subordinations in the complex plane, Complex Var. Theory Appl., 2011, 56, 439–454. Google Scholar

  • [33] Jeyaraman M. P., Suresh T. K., Third-order differential subordination of analysis functions, Acta Universitatis Apulensis, 2013, 35, 187–202. Google Scholar

  • [34] Tang H., Srivastiva H. M., Li S., Ma L., Third-order differential subordinations and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava Operator, Abstract and Applied Analysis, 2014, 1–11. Web of ScienceCrossrefGoogle Scholar

  • [35] Tang H., Deniz E., Third-order differential subordinations results for analytic functions involving the generalized Bessel functions, Acta Math. Sci., 2014, 6, 1707–1719. CrossrefWeb of ScienceGoogle Scholar

  • [36] Tang H., Srivastiva H. M., Deniz E., Li S., Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 2014, 1–22. Web of ScienceGoogle Scholar

  • [37] Farzana H. A., Stephen B. A., Jeyaraman M. P., Third-order differential subordination of analytic function defined by functional derivative operator, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014, 1–16. Google Scholar

  • [38] B. C. Carlson and D. B. Shaffer,Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 1984, 15, 737–745. Google Scholar

  • [39] Machado J. T., Discrete-time fractional-order controllers, Fractional Calculus and Applied Analysis, 2001, 4, 47–66. Google Scholar

  • [40] Pu Y.-F., Zhou J.-L., Yuan X., Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, Image Processing, IEEE Transactions on, 2010, 19, 491–511. Web of ScienceGoogle Scholar

  • [41] Jalab H. A., Ibrahim R. W., Fractional Conway polynomials for image denoising with regularized fractional power parameters, J. Math. Imaging Vis., 2015, 51, 442–450. Web of ScienceCrossrefGoogle Scholar

  • [42] Jalab H A, Ibrahim R. W., Fractional Alexander polynomials for image denoising, Signal Processing, 2015, 107, 340–354. Google Scholar

  • [43] Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., Discrete fractional diffusion equation, Nonlinear Dynamics, 2015, 80, 1–6. Google Scholar

About the article

Received: 2015-05-08

Accepted: 2015-09-09

Published Online: 2015-10-23


Citation Information: Open Mathematics, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0068.

Export Citation

©2015 Rabha W. Ibrahim et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in