[1] Runde, V., Amenability for dual Banach algebras, Studia Math., 2001, 148, 47-66.
Google Scholar

[2] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras, J. London Math. Soc., 2003, 67, 643-656.
CrossrefGoogle Scholar

[3] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 2003, 68,
325-328.
CrossrefGoogle Scholar

[4] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math.
Scand., 2004, 95, 124-144.
Google Scholar

[5] Johnson, B.E., Kadison, R.V., Ringrose, J., Cohomology of operator algebras III, Bull. Soc. Math. France, 1972, 100, 73-79.
Google Scholar

[6] Jewett, R.I., Spaces with an abstract convolution of measures, Advances in Math., 1975, 18, 1-110.
Google Scholar

[7] Bloom, W.R., Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin, 1995.
Google Scholar

[8] Amini, M., Module amenability for semigroup algebras, Semigroup Forum, 2004, 69, 243-254.
Google Scholar

[9] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Anal., 1967, 1, 443-491.
Google Scholar

[10] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math., 2007, 178(3), 231-275.
Google Scholar

[11] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002.
Google Scholar

[12] Corach, G., Galé, J. E., Averaging with virtual diagonals and geometry of representations. In: Banach algebras ’97, Walter de
Grutyer, Berlin, 87-100, 1998.
Google Scholar

[13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182.
Google Scholar

[14] T. H. Koornwinder, Alan L. Schwartz, Product formulas and associated hypergroups for orthogonal polynomials on the simplex
and on a parabolic biangle, Constr. Approx., 1997, 13, 537-567.
CrossrefGoogle Scholar

[15] Grothendieck, A., Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., 1953, 74, 168-186.
CrossrefGoogle Scholar

[16] M. Skantharajah, Amenable hypergroups, Illinois J. Math., 1992, 36(1), 15-46.
Google Scholar

[17] Johnson, B.E., Separate continuity and measurability, Proc. Amer. Math. Soc., 1969, 20, 420-422.
CrossrefGoogle Scholar

[18] Lasser, R., Amenability and weak amenability of `1-algebras of polynomial hypergroups, Studia Math., 2007, 182, 183-196.
Google Scholar

[19] Lasser, R., Various amenability properties of the L1-algebra of polynomial hypergroups and applications, J. Comput. Appl. Math.,
2009, 233, 786-792.
Web of ScienceGoogle Scholar

[20] Amini, M., Bodaghi, A., Ebrahimi Bagha, D., Module amenability of the second dual and module topological center of semigroup
algebras, Semigroup Forum, 2010, 80, 302-312.
Web of ScienceCrossrefGoogle Scholar

[21] Runde V., Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.
Google Scholar

[22] Doran, R.S., Wichman, J., Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics 768,
Springer-Verlag, Berlin, 1979.
Google Scholar

[23] Lasser, R., Orthogonal polynomials and hypergroups, Rend. Mat., 1983, 3, 185-209.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.