Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Vespri, Vincenzo / Marano, Salvatore Angelo


IMPACT FACTOR 2018: 0.726
5-year IMPACT FACTOR: 0.869

CiteScore 2018: 0.90

SCImago Journal Rank (SJR) 2018: 0.323
Source Normalized Impact per Paper (SNIP) 2018: 0.821

Mathematical Citation Quotient (MCQ) 2018: 0.34

ICV 2018: 152.31

Open Access
Online
ISSN
2391-5455
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

The estimates of diagonally dominant degree and eigenvalues inclusion regions for the Schur complement of block diagonally dominant matrices

Feng Wang / Deshu Sun
Published Online: 2015-11-05 | DOI: https://doi.org/10.1515/math-2015-0072

Abstract

The theory of Schur complement plays an important role in many fields, such as matrix theory and control theory. In this paper, applying the properties of Schur complement, some new estimates of diagonally dominant degree on the Schur complement of I(II)-block strictly diagonally dominant matrices and I(II)-block strictly doubly diagonally dominant matrices are obtained, which improve some relative results in Liu [Linear Algebra Appl. 435(2011) 3085-3100]. As an application, we present several new eigenvalue inclusion regions for the Schur complement of matrices. Finally, we give a numerical example to illustrate the advantages of our derived results.

Keywords: I(II)-Block strictly diagonally dominant matrix; I(II)-Block strictly doubly diagonally dominant matrix; Diagonally dominant degree; Eigenvalue

References

  • [1] Cvetkovi K c, Lj: A new subclass of H-matrices. Appl. Math. Comput. 208(2009), 206-210. Web of ScienceGoogle Scholar

  • [2] Ikramov, K.D.: Invariance of the Brauer diagonal dominance in gaussian elimination. Moscow University Comput. Math. Cybernet. .N2/ (1989),91-94. Google Scholar

  • [3] Li, B., Tsatsomeros, M.: Doubly diagonally dominant matrices. Linear Algebra Appl. 261(1997), 221-235. Google Scholar

  • [4] Liu, J.Z., Huang, Z.H., Zhu, L., Huang, Z.J.: Theorems on Schur complements of block diagonally dominant matrices and their application in reducing the order for the solution of large scale linear systems. Linear Algebra Appl. 435(2011), 3085-3100. Web of ScienceGoogle Scholar

  • [5] Liu, J.Z., Li, J.C., Huang, Z.H., Kong, X.: Some propertes on Schur complement and diagonal Schur complement of some diagonally dominant matrices. Linear Algebra Appl. 428(2008), 1009-1030. Google Scholar

  • [6] Liu, J.Z., Huang, Z.J.: The Schur complements of -diagonally and product -diagonally dominant matrix and their disc separation. Linear Algebra Appl. 432(2010), 1090-1104. Web of ScienceGoogle Scholar

  • [7] Liu, J.Z., Huang, Z.J.: The dominant degree and disc theorem for the Schur complement. Appl. Math. Comput. 215(2010), 4055-4066. Web of ScienceGoogle Scholar

  • [8] Liu, J.Z., Zhang, F.Z.: Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds. SIAM J. Matrix Anal. Appl. 27(2005) 665-674. Google Scholar

  • [9] Liu, J.Z., Huang, Y.Q.: The Schur complements of generalized doubly diagonally dominant matrices. Linear Algebra Appl. 378(2004), 231-244. Google Scholar

  • [10] Li, Y.T., Ouyang, S.P., Cao, S.J., Wang, R.W.: On diagonal-Schur complements of block diagonally dominant matrices. Appl. Math. Comput. 216(2010), 1383-1392. Web of ScienceGoogle Scholar

  • [11] Zhang, C.Y., Li, Y.T., Chen, F.: On Schur complement of block diagonally dominant matrices. Linear Algebra Appl. 414(2006), 533-546. Google Scholar

  • [12] Zhang, F.Z.: The Schur complement and its applications. Springer Press, New York, 2005. Google Scholar

  • [13] Demmel, J.W.: Applied numerical linear algebra. SIAM Press, Philadelphia, 1997. Google Scholar

  • [14] Golub, G.H., Van Loan, C.F.: Matrix computationss. third ed., Johns Hopkins University Press, Baltimore, 1996. Google Scholar

  • [15] Kress, R.: Numerical Analysis. Springer Press, New York, 1998. Google Scholar

  • [16] Xiang, S.H., Zhang, S.L.: A convergence analysis of block accelerated over-relaxation iterative methods for weak block H-matrices to partion π. Linear Algebra Appl. 418(2006), 20-32. Google Scholar

  • [17] Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. SIAM Press, Philadelphia, 1994, pp. 185. Google Scholar

  • [18] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York, 1991, pp. 117. Google Scholar

  • [19] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York, 1985, pp. 301. Google Scholar

  • [20] Salas, N.: Gershgorin’s theorem for matrices of operators. Linear Algebra Appl. 291(1999), 15-36. Google Scholar

About the article

Received: 2015-05-08

Accepted: 2015-10-14

Published Online: 2015-11-05


Citation Information: Open Mathematics, Volume 13, Issue 1, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2015-0072.

Export Citation

©2015 Feng Wang, Deshu Sun. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in