[1] Cvetkovi K c, Lj: A new subclass of H-matrices. Appl. Math. Comput. 208(2009), 206-210.
Web of ScienceGoogle Scholar

[2] Ikramov, K.D.: Invariance of the Brauer diagonal dominance in gaussian elimination. Moscow University Comput. Math. Cybernet.
.N2/ (1989),91-94.
Google Scholar

[3] Li, B., Tsatsomeros, M.: Doubly diagonally dominant matrices. Linear Algebra Appl. 261(1997), 221-235.
Google Scholar

[4] Liu, J.Z., Huang, Z.H., Zhu, L., Huang, Z.J.: Theorems on Schur complements of block diagonally dominant matrices and their
application in reducing the order for the solution of large scale linear systems. Linear Algebra Appl. 435(2011), 3085-3100.
Web of ScienceGoogle Scholar

[5] Liu, J.Z., Li, J.C., Huang, Z.H., Kong, X.: Some propertes on Schur complement and diagonal Schur complement of some
diagonally dominant matrices. Linear Algebra Appl. 428(2008), 1009-1030.
Google Scholar

[6] Liu, J.Z., Huang, Z.J.: The Schur complements of
-diagonally and product
-diagonally dominant matrix and their disc
separation. Linear Algebra Appl. 432(2010), 1090-1104.
Web of ScienceGoogle Scholar

[7] Liu, J.Z., Huang, Z.J.: The dominant degree and disc theorem for the Schur complement. Appl. Math. Comput. 215(2010),
4055-4066.
Web of ScienceGoogle Scholar

[8] Liu, J.Z., Zhang, F.Z.: Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds.
SIAM J. Matrix Anal. Appl. 27(2005) 665-674.
Google Scholar

[9] Liu, J.Z., Huang, Y.Q.: The Schur complements of generalized doubly diagonally dominant matrices. Linear Algebra Appl.
378(2004), 231-244.
Google Scholar

[10] Li, Y.T., Ouyang, S.P., Cao, S.J., Wang, R.W.: On diagonal-Schur complements of block diagonally dominant matrices. Appl.
Math. Comput. 216(2010), 1383-1392.
Web of ScienceGoogle Scholar

[11] Zhang, C.Y., Li, Y.T., Chen, F.: On Schur complement of block diagonally dominant matrices. Linear Algebra Appl. 414(2006),
533-546.
Google Scholar

[12] Zhang, F.Z.: The Schur complement and its applications. Springer Press, New York, 2005.
Google Scholar

[13] Demmel, J.W.: Applied numerical linear algebra. SIAM Press, Philadelphia, 1997.
Google Scholar

[14] Golub, G.H., Van Loan, C.F.: Matrix computationss. third ed., Johns Hopkins University Press, Baltimore, 1996.
Google Scholar

[15] Kress, R.: Numerical Analysis. Springer Press, New York, 1998.
Google Scholar

[16] Xiang, S.H., Zhang, S.L.: A convergence analysis of block accelerated over-relaxation iterative methods for weak block
H-matrices to partion π. Linear Algebra Appl. 418(2006), 20-32.
Google Scholar

[17] Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. SIAM Press, Philadelphia, 1994, pp. 185.
Google Scholar

[18] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York, 1991, pp. 117.
Google Scholar

[19] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York, 1985, pp. 301.
Google Scholar

[20] Salas, N.: Gershgorin’s theorem for matrices of operators. Linear Algebra Appl. 291(1999), 15-36.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.