[1] R. Khalil , M. Al Horani, A. Yousef and M. Sababheh “A new definition of fractional derivative” Journal of Computational and
Applied Mathematics ,(2014) 65–70.
Google Scholar

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam,
The Netherlands, 2006.
Google Scholar

[3] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY,
USA, 1993.
Google Scholar

[4] S. G. Samko, A. A. Kilbas, and O. I. Maritchev, Integrals and Derivatives of the Fractional Order and Some of Their Applications,
in Russian, Nauka i Tekhnika, Minsk, Belarus, 1987.
Google Scholar

[5] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, part II,” Geophysical Journal International,
vol. 13, no. 5, pp. 529–539, 1967.
Google Scholar

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam,
The Netherlands, 2006.
Google Scholar

[7] Abdon Atangana and Aydin Secer, “A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special
Functions,” Abstract and Applied Analysis, vol. 2013, Article ID 279681, 8 pages, 2013. doi:10.1155/2013/279681.
Google Scholar

[8] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus and
Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002.
Google Scholar

[9] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results,”
Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006.
Google Scholar

[10] M. Davison and C. Essex, “Fractional differential equations and initial value problems,” The Mathematical Scientist, vol. 23, no. 2,
pp. 108–116, 1998.
Google Scholar

[11] Abdon Atangana and Adem Kilicman, “Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion
Equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 853127, 9 pages, 2013. doi:10.1155/2013/853127.
Google Scholar

[12] Abdon Atangana and P. D. Vermeulen, “Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow
Equation,” Abstract and Applied Analysis, vol. 2014, Article ID 381753, 11 pages, 2014. doi:10.1155/2014/381753.
Google Scholar

[13] Abdon Atangana, “On the Singular Perturbations for Fractional Differential Equation,” The Scientific World Journal, vol. 2014,
Article ID 752371, 9 pages, 2014. doi:10.1155/2014/752371
Google Scholar

[14] Abdon Atangana and Innocent Rusagara, “On the Agaciro Equation via the Scope of Green Function,” Mathematical Problems in
Engineering, vol. 2014, Article ID 201796, 8 pages, 2014. doi:10.1155/2014/201796.
Google Scholar

[15] Y. Luchko and R. Gorenflo, The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative,
Preprint Series A08-98, Fachbereich Mathematik und Informatik, Freic Universität, Berlin, Germany, 1998.
Google Scholar

[16] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, Series on Complexity,
Nonlinearity and Chaos, World Scientific, Boston, 2012.
Google Scholar

[17] Thabet Abdeljawad. On the conformable fractional calculus.Journal of computational and Applied Mathematics, 279, pp. 57-66,
2015.
Web of ScienceGoogle Scholar

[18] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., vol.218, no.3 pp. 860-865, 2011.
Google Scholar

[19] D. R. Anderson and R. I. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic
Journal of Differential Equations, vol.2015 , no. 29, pp.1-10, 2015.
Google Scholar

[20] U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v2.
Google Scholar

[21] U. N. Katugampola, New approach to generalized fractional derivatives, B. Math. Anal. App., vol.6 no.4 pp. 1-15, 2014.
Google Scholar

[22] Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Three-point boundary value problems for conformable fractional differential
equations. Journal of Function Spaces 2015 (2015), 706383, 6 pages
Web of ScienceGoogle Scholar

[23] Benkhettou, N., Hassani, S., Torres, D.F.M., A conformable fractional calculus on arbitrary time scales,Journal of King Saud
University - Science, In Press, doi:10.1016/j.jksus.2015.05.003
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.