[1] Gassous, A; Răşcanu. A; Rotenstein, E. - Stochastic variational inequalities with oblique subgradients, Stoch. Proc. Appl., 2012,
Volume 122, Issue 7, 2668-2700.
Google Scholar

[2] Răşcanu, A.; Rotenstein, E. - A non-convex setup for multivalued differential equations driven by oblique subgradients, Nonlinear
Anal.-Theor., 2014, Volume 111 (December), 82-104.
Web of ScienceGoogle Scholar

[3] Lions, P.-L.; Sznitman, A. - Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., 1984,
Volume 37, no. 4, 511-537.
Google Scholar

[4] Barbu, V.; Răşcanu, A. - Parabolic variational inequalities with singular input, Differ. Integral Equ., 1997, Volume 10, Number 1,
pp. 67-83.
Google Scholar

[5] Răşcanu, A. - Deterministic and stochastic differential equations in Hilbert spaces involving multivalued maximal monotone
operators, Panamer. Math. J., 1996, Volume 6, no. 3, 83-119.
Google Scholar

[6] Pardoux, E.; Răşcanu, A. - Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling
and Applied Probability, vol. 69, Springer, 2014.
Google Scholar

[7] Răşcanu, A.; Rotenstein, E. - The Fitzpatrick function-a bridge between convex analysis and multivalued stochastic differential
equations, J. Convex Anal., 2011, Volume 18 (1), 105-138.
Google Scholar

[8] Eidus, D. - The perturbed Laplace operator in a weighted L2-space, J. Funct. Anal., 1991, Volume 100, no. 2, 400-410.
Google Scholar

[9] Barbu, V.; Favini, A. - On some degenerate parabolic problems, Ricerche Mat., 1997, Volume 46, Number 1, 77-86.
Google Scholar

[10] Altomare, F.; Milella, S.; Musceo, G. - Multiplicative perturbations of the Laplacian and related approximation problems, J. Evol.
Equ., 2011, 11, 771-792.
Web of ScienceCrossrefGoogle Scholar

[11] Barbu, V. - Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, 2010.
Google Scholar

[12] Lions, J.L. - Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, 1969.
Google Scholar

[13] Barbu, V. - Optimal Control of Variational Inequalities, Pitman Publishing INC., 1984.
Google Scholar

[14] Aubin, J. P. - Un théorème de compacité, C. R. Acad. Sci. Paris, 1963, 256, 5042-5044.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.