[1]

Diethelm K., The Analysis of Fractional Differential Equations, Springer, Berlin, 2010. Google Scholar

[2]

Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. Google Scholar

[3]

Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

[4]

Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. Google Scholar

[5]

Ahmad B., Ntouyas S.K., Alsaedi A., New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ., 2011, Art. ID 107384, 11 pp. Google Scholar

[6]

Alsaedi A., Ntouyas S.K., Agarwal R.P., Ahmad B., On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Adv. Difference Equ., 2015, 2015:33.Google Scholar

[7]

Ahmad B., Ntouyas S.K., Tariboon J., Fractional differential equations with nonlocal integral and integer-fractional-order Neumann type boundary conditions, Mediterr. J. Math., DOI 10.1007/s00009-015-0629-9.CrossrefGoogle Scholar

[8]

Bai Z.B., Sun W., Existence and multiplicity of positive solutions for singular fractional boundary value problems, Comput. Math. Appl., 2012, 63, 1369-1381.Google Scholar

[9]

Su Y., Feng Z., Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta Appl. Math., 2012, 118, 81-105.Google Scholar

[10]

Diethelm K., Ford N.J., Analysis of fractional differential equations, J. Math. Anal. Appl., 2002, 265, 229-248.Google Scholar

[11]

Galeone L., Garrappa R., Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 2009, 288, 548-560. Google Scholar

[12]

Grace S.R., Agarwal R.P., Wong J.Y., Zafer A., On the oscillation of fractional differential equations, Frac. Calc. Appl. Anal., 2012, 15, 222-231. Google Scholar

[13]

Chen D., Oscillation criteria of fractional differential equations, Adv. Difference Equ., 2012, 33, 1-18.Google Scholar

[14]

Han Z., Zhao Y., Sun Y., Zhang C., Oscillation for a class of fractional differential equation, Discrete Dyn. Nat. Soc., 2013, Art. ID 390282, 1-6.Google Scholar

[15]

Feng Q., Meng F., Oscillation of solutions to nonlinear forced fractional differential equations, Electron. J. Differential Equations, 2013, 169, 1-10.Google Scholar

[16]

Liu T., Zheng B., Meng F., Oscillation on a class of differential equations of fractional order, Math. Probl. Eng., 2013, Art. ID 830836, 1-13.Google Scholar

[17]

Chen D., Qu P., Lan Y., Forced oscillation of certain fractional differential equations, Adv. Difference Equ., 2013, 2013:125.Google Scholar

[18]

Wang Y.Z., Han Z.L., Zhao P., Sun S.R., On the oscillation and asymptotic behavior for a kind of fractional differential equations, Adv. Difference Equ., 2014, 2014:50. Google Scholar

[19]

Khalil R., Al Horani M., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65-70. Google Scholar

[20]

Abdeljawad T., On conformable fractional calculus, J. Comput. Appl. Math., 2015, 279, 57-66. Google Scholar

[21]

Anderson D., Ulness D., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 2015, 10, 109-137. Google Scholar

[22]

Batarfi H., Losada J., Nieto J.J., Shammakh W., Three-point boundary value problems for conformable fractional differential equations, J. Func. Spaces, 2015, Art. ID 706383, 1-6.Google Scholar

[23]

Abdeljawad T., Al Horani M., Khalil R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 2015, Art. ID 7.Google Scholar

[24]

Abu Hammad M., Khalil R., Fractional Fourier series with applications, Amer. J. Comput. Appl. Math., 2014, 4, 187-191.Google Scholar

[25]

Abu Hammad M., Khalil R., Abel’s formula and Wronskian for conformable fractional differential equations, Internat. J. Diff. Equ. Appl., 2014, 13, 177-183. Google Scholar

[26]

Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of impulsive differential equations, World Scientific, Singapore-London, 1989. Google Scholar

[27]

Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Scientific, Singapore, 1995.Google Scholar

[28]

Benchohra M., Henderson J., Ntouyas S.K., Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006. Google Scholar

[29]

Tariboon J., Thiramanus P., Oscillation of a class of second-order linear impulsive differential equations, Adv. Difference Equ., 2012, 2012:205. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.