[1]

Thomson J., Lin M., Halliday L., et al., Australia’s notifiable diseases status 1998, Annual report of the National Notifiable Diseases Surveillance System., 1999, 23, 11 Google Scholar

[2]

Smythe L., Symonds M., Dohnt M., Barnett L., Moore M., Leptospirosis surveillance report number 8 (Queensland and Australia), Surv Report 8., Jan - Dec 99, Qld health Scientific Services, Coopers Plains, Queensland, 2000 Google Scholar

[3]

Adams B.M., Banks H.T, Kwon H., Hien T., Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Mathematical Biosciences and Engineering., 2004, 1,2, 223 - 241 Google Scholar

[4]

Denis K., Lenhart S., Steve S., Optimal control of the chemotherapy of HIV, Journal Math. Biology., 1997, 35, 775-792Google Scholar

[5]

Karrakchou M., Gourari R.S., Optimal control and infectiology: Application to an HIV/AIDS model, Applied Mathematics and Computation., 2006, 177, 807 - 818Google Scholar

[6]

Kirschner D., Lenhart S., Serbin S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 1997, 35, 775-792 Google Scholar

[7]

Goldman S.M., Lightwood J., Cost optimization in the SIS model of infectious disease with treatment, Topics in Economic Analysis and Policy., 2002, 2 article 4. Google Scholar

[8]

Gupta N.K., Rink R.E., Optimal control of Epidemics, Mathematical Biosciences., 1973, 18, 383-396Google Scholar

[9]

Wickwire K., A note on the optimal control of carrier-borne epidemic, Journal of Applied probability., 1975, 12, 565-568Google Scholar

[10]

Sethi S.P., Optimal Quarantine programmes for controlling an epidemic spread, Journal Opl. Res. Soc. Pergamon press., 1978, 29, 265-268 Google Scholar

[11]

Cesar C., Optimal control of an epidemic through educational campaigns, Electronic Journal of Differential Equations., 2006, 125, 1-11 Google Scholar

[12]

Sethi S.P., Staats W.P., Optimal control of some simple deterministic epidemic models, Journal Opl. Res. Soc. Pergamin press., 1978, 29, 129-136 Google Scholar

[13]

Kar T.K., Batabyal A., Stability analysis and optimal control of an SIR epidemic model with vaccination, BioSystems, 2011, 104, 2-3, 127 - 135 Google Scholar

[14]

Makinde O.D., Okosun K.O., Impact of chemo-therapy on optimal control of malaria disease with infected immigrants, BioSystems, 2011, 104(1), 32–41 Google Scholar

[15]

Okosun K.O., Makinde O.D., On a drug-resistant malaria model with susceptible individuals without access to basic amenities, Journal of Biological Physics., 2012, 38(3), 507-530 Google Scholar

[16]

Blayneh K., Cao Y., Hee-Dae K., Optimal control of vector-borne diseases: Treatment and Prevention, Discrete and continuous dynamical systems series B., 2009, 11, 587-611 Google Scholar

[17]

Rafikov M., Bevilacqua L., Wyse A.P.P., Optimal control strategy of malaria vector using genetically modified mosquitoes, Journal of Theoretical Biology., 2009, 258, 418 - 425 Google Scholar

[18]

Ainseba B., Benosman C., Optimal control for resistance and suboptimal response in CML, Mathematical Biosciences., 2010, 227(2), 81 - 93 Google Scholar

[19]

Nanda S., Moore H., Lenhart S., Optimal control of treatment in a mathematical model of chronic myelogenous Leukemia, Mathematical Biosciences., 2007, 210, 143Google Scholar

[20]

Ozair M., Lashari A.A., Jung I.H., Okosun K.O., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence, Discrete Dynamics in Nature and Society., 2012, 2012, 21 pagesGoogle Scholar

[21]

Okosun K.O., Ouifki R., Marcus N., Optimal control strategies and cost-effectiveness analysis of a malaria model, BioSystems., 2013, 111(2), 83 - 101 Google Scholar

[22]

Zaman G., Khan M.A., Islam S., Chohan M.I., Jung I.H., Modeling dynamical interactions between leptospirosis infected vector and human population, Applied Mathematical Sciences., 2012, 6(26), 1287 - 1302 Google Scholar

[23]

Khan M.A., Zaman G., Islam S., Chohan M.I., Optimal campaign in leptospirosis epidemic by multiple control variables, Applied Mathematics., 2012, 3, 1655 - 1663 Google Scholar

[24]

Driessche P.V., Watmough J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosciences., 2002, 180, 29-48 Google Scholar

[25]

Safi M.A., Garba S.M., Global stability analysis os SEIR model with Holling Type II incidence function, Computational and Mathematical Methods in Medicine., 2012, 1 - 8 Google Scholar

[26]

LaSalle J.P., The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA., 1976 Google Scholar

[27]

Nakul C., Cushing J.M., Hyman J.M., Bifurcation Analysis of a Mathematical model for malaria transmission, SIAM J. APPL. MATH., 2006, 67(1), 24 - 45 Google Scholar

[28]

Joshi H.R., Lenhart S., Li M.Y., Wang L., Optimal control methods applied to disease models, Comtemporary Mathematics., 2006, 410, 187-207 Google Scholar

[29]

Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, Wiley, New York., 1962 Google Scholar

[30]

Fleming W.H., Rishel R.W., Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975 Google Scholar

[31]

Lenhart S., Workman J.T., Optimal control applied to biological Models, Chapman and Hall Google Scholar

[32]

Lenhart S.M., Yong J., Optimal Control for Degenerate Parabolic Equations with Logistic Growth, Nonlinear Anal., 1995, 25, 681-698 Google Scholar

[33]

Abiodun G.J., Marcus N., Okosun K.O., Witbooi P.J., A model for control of HIV/AIDS with parental care, International Journal of Biomathematics., 2013, 6(2), 15 pages Google Scholar

[34]

Triampo W., Baowan D., Tang I.M., Nuttavut N., Ekkabut J.W., Doungchawee G., A simple deterministic model for the spread of leptospirosis in Thailand, Int. J. Bio. Med. Sci., 2007, 2, 22 - 26 Google Scholar

[35]

Tangkanakul W., Smits H.L., Jatanasen S., Ashford D.A., An emerging health problem in Thailand, South Asian, J. Tropical Med. Pub. Health., 2005, 36, 281-288 Google Scholar

## Comments (0)