[1]

Merris R., Laplacian matrices of graphs: a survey, Lin. Algebra Appl., 1994, 197-198, 143-176 Google Scholar

[2]

Fiedler M., Algebraic connectivity of graphs, Czech. Math. J., 1973, 23, 298-305 Google Scholar

[3]

Klavžar S., Milutinović U., Graphs *S(n, k)* and a variant of the tower of Hanoi problem, Czech. Math. J., 1997, 47, 95-104 Google Scholar

[4]

Klavžar S., Milutinović U., Petr C., 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc., 2002, 66, 369-384 Google Scholar

[5]

Hasunuma T., Structural properties of subdivided-line graphs, J. Discrete Algorithms, 2015, 31, 69-86 Google Scholar

[6]

Nikolopoulos S.D., Papadopoulos C., The number of spanning trees in *K*_{n}-complements of quasi-threshold graphs, Graphs Combin., 2004, 20, 383-397 Google Scholar

[7]

Chung K.L., Yan W.M., On the number of spanning trees of a multi-complete/star related graph, Inform. Process. Lett., 2000, 76, 113-119Google Scholar

[8]

Zhang Z.Z., Wu B., Comellas F., The number of spanning trees in Apollonian networks, Discrete Appl. Math., 2014, 169, 206-213Google Scholar

[9]

Hinz A., Klavžar S., Zemljić S., Sierpiński graphs as spanning subgraphs of Hanoi graphs, Cent. Eur. J. Math., 2013, 11, 1153-1157Google Scholar

[10]

Xiao J., Zhang J., Sun W., Enumeration of spanning trees on generalized pseudofractal networks, Fractals, 2015, 23, 1550021 Google Scholar

[11]

Sun W., Wang S., Zhang J., Counting spanning trees in prism and anti-prism graphs, J. Appl. Anal. Comp., 2016, 6, 65-75 Google Scholar

[12]

Kirchhoff G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem., 1847, 72, 497-508 Google Scholar

[13]

Garey M.R., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 Google Scholar

[14]

Teufl E., Wagner S., Determinant identities for Laplace matrice, Lin. Algebra Appl., 2010, 432, 441-457 Google Scholar

[15]

Fath-Tabar G.H., Ashrafi A.R., Gutman I., Note on Estrada and L-Estrada indices of graphs, Bull. Cl. Sci. Math. Nat. Sci. Math., 2009, 139, 1-16 Google Scholar

[16]

Estrada E., Characterization of 3D molecular structure, Chem. Phys. Lett., 2000, 319, 713-718 Google Scholar

[17]

Zhou B., Gutman I., More on the Laplacian Estrada index, Appl. Anal. Discrete Math., 2009, 3, 371-378 Google Scholar

[18]

Shang Y., Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs, PLoS ONE, 2015, 10, e0123426Google Scholar

[19]

Chen X., Hou Y., Some results on Laplacian Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 2015, 73, 149-162Google Scholar

[20]

Shang Y., Estrada and L-Estrada indices of edge-independent random graphs, Symmetry, 2015, 7, 1455-1462 Google Scholar

[21]

Anderson W.N., Morley T.D., Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra, 1985, 18, 141-145 Google Scholar

[22]

Tian G., Huang T., Cui S., Bounds on the algebraic connectivity of graphs, Advances in Mathematics (China), 2012, 41, 217-224 Google Scholar

[23]

Gong H., Jin X., A formula for the number of the spanning trees of line graphs, arXiv:1507.063891 Google Scholar

[24]

Gutman I., Das K.Ch., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 2004, 50, 83-92 Google Scholar

[25]

Harary F., Graph Theory, Addison-Wesley, Massachusetts, 1971 Google Scholar

[26]

Mohar B., Eigenvalues, diameter, and mean distance in graphs, Graphs Combin., 1991, 7, 53-64 Google Scholar

[27]

Hedman B., Clique graphs of time graphs, J. Combin. Th. Ser. B, 1984, 37, 270-278 Google Scholar

[28]

Hedman B., Diameters of iterated clique graphs, Hadronic J., 1986, 9, 273-276 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.