## Abstract

In this paper, geometric properties of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space are investigated by applying the singularity theory of smooth functions from the contact viewpoint.

Show Summary Details# Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space

#### Open Access

## Abstract

## 1 Introduction

## 2 The local differential geometry of spacelike curves on a timelike surface

## 3 Height functions on spacelike curves

## 4 Lightcone pedal curves

## Acknowledgements

## Reference

## About the article

More options …# Open Mathematics

### formerly Central European Journal of Mathematics

More options …

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo

1 Issue per year

IMPACT FACTOR 2016 (Open Mathematics): 0.682

IMPACT FACTOR 2016 (Central European Journal of Mathematics): 0.489

CiteScore 2016: 0.62

SCImago Journal Rank (SJR) 2016: 0.454

Source Normalized Impact per Paper (SNIP) 2016: 0.850

Mathematical Citation Quotient (MCQ) 2016: 0.23

In this paper, geometric properties of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space are investigated by applying the singularity theory of smooth functions from the contact viewpoint.

Keywords: Singularities; Spacelike curve; Pedal curve; Height function; Contact

This paper is written as a part of our research project on the study of Lorentz pairs in semi-Euclidean space with index 2 from the viewpoint of Lagrangian/Legendrian singularity theory. Our aim is to investigate the geometric properties of different Lorentzian pairs by constructing a unified way. A Lorentzian pair consists of a Lorentzian hypersurface *W* in semi-Euclidean space with index two and a timelike hypersurface *M* in *W*. *AdS ^{4}/AdS^{5}*, for example, is a Lorentzian pair which is one of the space-time models in physics. As the first step of this research, we consider the simplest Lorentzian pair, i.e., a timelike curve on a Lorentzian surface in semi-Euclidean 3-space with index 2. However, a Lorentz-Minkowski 3-space is diffeomorphic to a semi-Euclidean 3-space with index 2, although the causalities of these two spaces are different. For the geometric properties, we can investigate a spacelike curve on a timelike surface in Lorentz-Minkowski 3-space instead of a timelike curve on a Lorentzian surface in semi-Euclidean 3-space with index 2.

On the other hand, singularity theory tools are useful in the investigation of geometric properties of submanifolds immersed in different ambient spaces, from both the local and global viewpoint [1-16]. The natural connection between geometry and singularities relies on the basic fact that the contacts of a submanifold with the models (invariant under the action of a suitable transformation group) of the ambient space can be described by means of the analysis of the singularities of appropriate families of contact functions, or equivalently, of their associated Lagrangian and/or Legendrian maps. This is our main motivation for the investigation of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space from the viewpoint of singularity theory.

The organization of the paper is as follows. We construct the framework of local differential geometry of spacelike curves on a timelike surface in Section 2. We give the Frenet-Serret type formula corresponding to the spacelike curves. Moreover, we define the lightcone Gauss image and the normalized Gauss map. We also define new invariants ${K}_{L}^{\pm}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{and}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{\stackrel{~}{K}}_{L}^{\pm}$ and call them lightcone Gauss-Kronecker curvature and normalized lightcone Gauss-Kronecker curvature, respectively. We investigate their relations. We can prove that these two Gauss-Kronecker curvature functions have the same zero sets. In Section 3 we introduce the notion of height functions on spacelike curves on a timelike surface which are useful to show that the normalized lightcone Gauss map has a singular point if and only if the lightcone Gauss-Kronecker curvature vanishes at such point. According to the general results on the singularity theory for families of function germs (cf. [17]), we study the relationship of these height functions (cf. Theorem 3.5). In the last section, we define a curve in the lightcone, named the lightcone pedal, as a tool to study the geometric properties of singularities of the normalized lightcone Gauss map from the contact viewpoint.

In this section, we investigate the basic ideas on semi-Euclidean (n+1)-space with index two and the local differential geometry of Lorentzian pairs in semi-Euclidean (n+1)-space. For details about semi-Euclidean geometry, see [18]. Let ℝ^{3} ={(*x*_{1}, *x*_{2}, *x*_{3})|*x*_{i} ∈ ℝ, i = 1, 2, 3} be a 3-dimensional vector space. For any vectors *x* = (*x*_{1}, *x*_{2}, *x*_{3} and *y* = (*y*_{1}, *y*_{2}, *y*_{3} in ℝ^{3}, the *pseudo scalarproduct* of *x* and *y* is defined to be 〈*x,y*〉 = -*x*_{1}*y*_{1} + *x*_{2}*y*_{2} + *x*_{3}*y*_{3}. We call (ℝ^{3}, 〈,〉) the *Minkowski* 3-*space* and write ℝ_{1}^{3} instead of (ℝ^{3}, 〈,〉).

We say that a non-zero vector *x* in ℝ_{1}^{3} is *spacelike, lightlike* or *timelike* if 〈*x*,*x*〉 > 0, 〈*x*,*x*〉 = 0 or 〈*x*,*x*〉 > 0 respectively. The *norm* of the vector *x* ∈ ℝ_{1}^{3} is defined by
$\parallel x\parallel =\sqrt{|\{{x}_{;}x\}|}.$

For any *x* = (*x*_{1}, *x*_{2}, *x*_{3}), *y* = *y*_{1}, *y*_{2}, *y*_{3} ∈ ℝ_{1}^{3}, we define a vector *x* ∧ *y* by
$$X\wedge \mathcal{Y}=\left|\begin{array}{lll}-{e}_{1}& {e}_{2}& {e}_{3}\\ {x}_{1}& {x}_{2}& {x}_{3}\\ {y}_{1}& {y}_{2}& {y}_{3}\end{array}\right|,$$

where {*e*_{1}, *e*_{2}, *e*_{3}} is the canonical basis of ℝ_{1}^{3}. For any *ω* ∈ ℝ_{1}^{3}, we can easily check that
$$\{w,x\wedge y\}=det(w,x,y),$$

so that *x*∧*y* is pseudo-orthogonal to both *x* and *y*. Moreover, by a straightforward calculation, we have the following simple lemma.

*For any non-zero vectors* *x,y* ∈ ℝ_{1}^{3}, *we assume that* 〈*x*,*x*〉 *and* *x*∧*y* *z*. *Then we have the following assertions*:

*If**x**is a timelike vector**y**is a spacelike vector then**z*∧*x*=*y**y*∧*z*= -*x*.*If**x**is a spacelike vector and**y**is a timelike vector then**z*∧*x*= -y,*y*∧*z*= x.*If both**x**and**y**are spacelike vectors, then**z*∧*x*= -y,*y*∧*z*= -x.

For a vector *ν* ∈ ℝ_{1}^{3} and a real number *c*, we define the *plane* with the pseudo-normal *ν* by
$$P(v,c)=\{x\in {\mathbb{R}}_{1}^{3}|\{x,v\}=c\}.$$

We call *P*(*ν*,*c*) a *timelike plane, spacelike plane* or *lightlike plane* if *v* is *spacelike, timelike or lightlike*, respectively. We define the *hyperbolic* 2-*space* by
$${H}^{2}(-1)=\{x\in {\mathbb{R}}_{1}^{3}|\{x,x\}=-1\},$$

the *de Sitter* 2-*space* by
$${S}_{1}^{2}=\{x\in {\mathbb{R}}_{1}^{3}|\{x,x\}=1\},$$

the (*open*) *lightcone* at the origin by
$$L{C}^{\ast}=\{x\in {\mathbb{R}}_{1}^{3}\mathrm{\setminus}\{0\}|\{x,x\}=0\}.$$

We call
$L{C}_{+}^{\ast}=\{x\in L{C}^{\ast}|{x}_{1}>0\}$ the *future lightcone*. We also define the *spacelike lightcone circle* by
$${S}_{+}^{1}=\{x=({x}_{1},{x}_{2},{x}_{3})\in L{C}^{\ast}|{x}_{1}=1\}.$$

For any lightlike vector *x* = (*x*_{1}, *x*_{2}, *x*_{3}) ∈ *LC*^{*}, we have
$$\stackrel{~}{x}=(1,\frac{{x}_{2}}{{x}_{1}},\frac{{x}_{3}}{{x}_{1}})=\frac{1}{{x}_{1}}x\in {S}_{+}^{1}.$$

We study the local differential geometry of spacelike curves on a timelike surface as follows. Firstly, let *Y* : *V* → ℝ_{1}^{3} be a regular surface (i.e., an embedding), where *V* ⊂ ℝ^{2} is an open subset. We denote *W* = *Y*(*V*) and identify *W* with *V* via the embedding *Y*. The embedding *Y* is said to be timelike if the induced metric I of *W* is Lorentzian. Throughout the remainder of this paper we assume that *W* is a timelike surface in ℝ_{1}^{3}. We define a vector *N*(*v*) by
$$N(v)=\frac{{\mathrm{Y}}_{{v}_{1}}(v)\wedge {\mathrm{Y}}_{{v}_{2}}(v)}{\parallel {\mathrm{Y}}_{{v}_{1}}(v)\wedge {\mathrm{Y}}_{{v}_{2}}(v)\parallel}.$$

By the definition of wedge product, we have 〈*N*(*ν*), *Y*_{νi} (*u*) = 0 (for *i* = 1,2). This means that *N*(ν) ∈ *N*_{q}*W*, where *ν* = (*ν*_{1}, *ν*_{2}) ∈ *V*, *q* = *Y* (*ν*) ∈ *W* and *N _{q}W* denotes the normal space of

We define a smooth mapping
$\overline{\gamma}:I\to V\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\overline{\gamma}(s)=v.$ For any *s Ȉ I*, we have
$\gamma (s)=\mathrm{Y}(\overline{\gamma}(s)).$ It follows that the unit spacelike normal vector field of *W* along *γ* can be defined by
$n(s)=N(\overline{\gamma}(s)),$ for any *s Ȉ I*. We can also define another unit normal vector field *e* by *e*(*s*) = *n(s)* ∧ *t(s)*. Since *t* and *n* are spacelike, *e* is timelike. Then we have a pseudo-orthonormal frame {*t(s)*, *n(s)*, *e(s)*} of ℝ_{1}^{3} along *γ(s)*. By a straightforward calculation, we arrive at the following *Frenet-Serret type formula*:
$$\left\{\begin{array}{l}{t}^{\prime}(s)={\kappa}_{n}(s)n(s)-{\kappa}_{g}(s)e(s),\\ {n}^{\prime}(s)=-{\kappa}_{n}(s)t(s)+{\tau}_{g}(s)e(s),\\ {e}^{\prime}(s)=-{\kappa}_{g}(s)t(s)+{\tau}_{g}(s)n(s),\end{array}\right.$$

where ${\kappa}_{n}(s)=\{{t}^{\prime}(s),n(s)\},{\kappa}_{g}(s)=\{{t}^{\prime}(s),e(s)\},{\tau}_{g}(s)=\{{e}^{\prime}(s),n(s)\}.$ We call them the *normal curvature, geodesic curvature* and *geodesic torsion* of *γ* at point *p* = *γ(s)* , respectively. We remark that *γ* is a spacelike geodesic curve on *W* if and only if *κ*_{g} = 0; *γ* is a spacelike asymptotic curve on *W* if and only if *κ*_{n} = 0; *γ* is a spacelike principal curve on *W* if and only if *τ*_{g} = 0.

Let *n(s)* = (*n*_{1}(*s*), *n*_{2}(*s*), *n*_{3}(*s*)) and *e*(*s*) = (*e*_{1}(*s*), *e*_{2}(*s*), *e*_{3}(*s*)). Since *n*(*s*) ± *e*(*s*)Ȉ *LC*^{*}, we can define a mapping
${\mathrm{G}}_{L}^{\pm}:I\to L{C}^{\ast}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{\mathrm{G}}_{L}^{\pm}(s)=n(s)\pm e(s).$ We call it the *lightcone Gauss image*. Moreover, we define another mapping
${\mathrm{G}}_{L}^{\pm}:I\to {S}_{+}^{1}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{\displaystyle {\mathrm{G}}_{L}^{\pm}(s)=n(s)\pm e(s)=\frac{1}{{\xi}^{\pm}(s)}{\mathbb{G}}_{L}^{\pm}(s),}$ where ${\xi}^{\pm}(s)={n}_{1}(s)\pm {e}_{1}(s).$ We call it the *normalized lightcone Gauss map*. By a straightforward calculation, we have
$${\mathbb{G}}_{L}^{{\pm}^{\prime}}(s)={n}^{\prime}(s)\pm {e}^{\prime}(s)=-({\kappa}_{n}(s)\pm {\kappa}_{g}(s))t(s)\pm {\tau}_{g}(s){\mathbb{G}}_{L}^{\pm}(s).$$

Let
${\pi}^{T}:{T}_{p}M\oplus {N}_{p}M\to {T}_{p}M.$
It follows that
$-{\pi}^{T}\circ {\mathrm{G}}_{L}^{{\pm}^{\prime}}(s)=({\kappa}_{n}(s)\pm {\kappa}_{g}(s))t(s).$
Moreover, we also have
$-{\displaystyle {\pi}^{T}\circ {\mathrm{G}}_{L}^{{\pm}^{\prime}}(s)=\frac{1}{{\xi}^{\pm}(s)}({\kappa}_{n}(s)\pm {\kappa}_{g}(s))t(s).}$
According to the above calculations, we can define new invariants
${K}_{L}^{\pm}$
and
${\stackrel{~}{K}}_{L}^{\pm}$
by
${K}_{L}^{\pm}(s)={\kappa}_{n}(s)\pm {\kappa}_{g}(s)$
and
${\overline{K}}_{L}^{\pm}(s)=\frac{1}{{\xi}^{\pm}(s)}({\kappa}_{n}(s)\pm {\kappa}_{g}(s)),$
respectively. We call them the *lightcone Gauss-Kronecker curvature* (or, *lightcone G-K curvature*) of *M* and *normalized lightcone Gauss*-*Kronecker curvature* (or, *normalized lightcone G-K curvature*) of *M*, respectively. By the definitions, we have
${K}_{L}^{\pm}(s)=0$
if and only if
${\stackrel{~}{K}}_{L}^{\pm}(s)=0,$
for *sȈ I*.

For
$v\in {S}_{+}^{1},c\in \mathbb{R}$
we denote
${S}_{L}(v,c)=P(v,c)\cap W$ and call it the *lightlike slice*. Then we have the following proposition.

*Using the above notations, the following conditions are equivalent*

${K}_{L}^{\pm}\equiv 0.$

${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}$

There exists a constant lightlike vector ν ∈

*S*_{±}^{1}such that}Im γ ⊂*S*._{L}(ν,c)

We first assume that ${K}_{L}^{\pm}\equiv 0$

This condition is equivalent to ${\stackrel{~}{\mathbb{K}}}_{L}^{\pm}\equiv 0$

It follows that$${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)=-\frac{{\xi}^{{\pm}^{\prime}}(s)}{{\xi}^{{\pm}^{2}}(s)}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)\pm \frac{{\tau}_{g}(s)}{{\xi}^{\pm}(s)}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)=(-\frac{{\xi}^{{\pm}^{\prime}}(s)}{{\xi}^{\pm}(s)}\pm {\tau}_{g}(s)){\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s).$$

Since the first component of
${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)$
is 1, the first component of ${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)$
is 0. Therefore
${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)=0$
for any *s* ∈ *I*. It follows that
${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}$
is constant. Moreover, if${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}$
is constant, then
${K}_{L}^{\pm}\equiv 0$Thus the conditions (1) and (2) are equivalent.

On the other hand, suppose that
${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}$
is constant. We assume that $v={\mathrm{G}}_{L}^{\pm}.\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{Then}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\{\gamma (s{)}_{;}v{\}}^{\prime}=0$
This means that 〈*γ(s),ν=c*, where *c ∈ R* is a constant real number. Therefore, *γ* is a part of *P(νc) ∩ W*. Moreover, we assume that there exists a constant lightlike vector$v\in {S}_{+}^{1}$
*ν ∈ S _{+}^{1}* such that$\gamma \subset P(v,c)\cap W.$ It follows that 〈

As an application of the above proposition, we have the following corollary.

*Using the same notations, with the above proposition}, $s_{0}$ {\it is a singular point of the normalized lightcone Gauss map*
${\stackrel{~}{\mathbb{G}}}_{L}^{\pm},\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}only\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{\pm}(s\mathrm{o})=0.$ mathrm{G}_{L}^{\pm}$ {\it if and only if} $K_{L}^{\pm}(s\mathrm{o}) =0.

In this section we define three families of functions on the spacelike curve *γ* on *W* which are helpful for investigating the geometric properties of the spacelike curve.

Let *γ* : *I* → *W* be a spacelike curve on W. We first define a function$H:I\times {S}_{+}^{1}\to \mathbb{R}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{b}y\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}H({s}_{,}v)=\u3008\gamma (s),v\u3009.$
We call it the *lightcone circle height function* on γ. For any fixed *ν ∈ S _{+}^{1}*, we denote

*Suppose that γ : I → W is a unit-speed spacelike curve on W. Then we have the following assertions}*:

*h*${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}).$_{γ}′(s_{0})=0 if and only if*h*=_{γ}′(s_{0})*h*=0 if and only if$v={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{\pm}({s}_{0})=0.$_{γ}″(s_{0})${h}_{v}^{\prime}({s}_{0})={h}_{v}^{\u2033}({s}_{0})={h}_{v}^{\u2034}({s}_{0})=0$ if and only if $v={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}),{K}_{L}^{\pm}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{a}\mathit{n}\mathit{d}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{{\pm}^{\prime}}({s}_{0})=0.$

Since {*t(s),n(s),e(s)*} is a pseudo orthonormal frame of *ℝ*_{1}^{3} along *γ(s)* and *ν ∈*S_{+}^{1} there exist *η α λ ∈ ℝ* with *η _{2} + α_{2} - λ_{2} = 0* such that
$v=\eta t(s)+\alpha n(s)+\lambda e(s)$
By the definition of

Since *h _{ν}″(s_{0})*=0 〈 t′(s

Since *h _{ν}‴(s_{0})* = 0 we have t′(s

Moreover, we define another function we have$I\times {S}_{+}^{1}\times {\mathbb{R}}^{\ast}\to \mathbb{R}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\overline{H}({s}_{,}{v}_{,}r)=\{\gamma (s),v\}-r$. We call it the *extended lightcone circle height function*. For any fixed we have$v\in {S}_{+}^{{1}_{;}},\phantom{\rule{thinmathspace}{0ex}}r\in {\mathbb{R}}^{\ast}$ we have ${\overline{h}}_{(}{v}_{;}r)(s)=\overline{H}({s}_{,}{v}_{,}r)$. By almost the same arguments as in above proposition, we have the following proposition.

Suppose that *γ : I → W is a unit speed spacelike curve on W. Then we have the following assertions*:

$${\overline{h}}_{(v,r)}({s}_{0})={\overline{h}}_{(}^{\prime}{v}_{,}r)({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{i}\mathit{f}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{a}\mathit{n}\mathit{d}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{o}\mathit{n}\mathit{l}\mathit{y}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{i}\mathit{f}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}v={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}{)}_{,}r=\u3008\gamma ({s}_{0}{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\u3009.$$

$${\overline{h}}_{(v,r)}({s}_{0})={\overline{h}}_{({v}_{,}r)}^{\prime}({s}_{0})={\overline{h}}_{({v}_{,}r)}^{\u2033}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}only\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}v={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}{)}_{,}r=\u3008\gamma ({s}_{0}{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\u3009\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{\pm}({s}_{0})=0.$$

$${\overline{h}}_{(v,r)}({\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{=}\cdots \mathit{=}{\overline{\mathit{h}}}_{\mathit{(}{\mathit{v}}_{\mathit{,}}\mathit{r}\mathit{)}}^{\u2034}\mathit{(}{\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{=}\mathit{0}$$

*if and only if*$v={\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}({\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{,}\mathit{r}\mathit{=}\u3008\gamma \mathit{(}{\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{,}{\stackrel{\mathit{~}}{\mathbb{G}}}_{\mathit{L}}^{\pm}\mathit{(}{\mathit{s}}_{\mathit{0}}\mathit{)}\u3009\mathit{,}{\mathit{K}}_{\mathit{L}}^{\pm}\mathit{(}{\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{=}\mathit{0}$*and*${K}_{L}^{{\pm}^{\prime}}({\mathit{s}}_{\mathit{0}}\mathit{)}\mathit{=}\mathit{0.}$

Furthermore, we define the third function
$I\times L{C}^{\ast}\to \mathbb{R}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\stackrel{\mathit{~}}{\mathit{H}}\mathit{(}{\mathit{s}}_{\mathit{,}}\mathit{v}\mathit{)}\mathit{=}\u3008\gamma \mathit{(}\mathit{s}\mathit{)}\mathit{,}\stackrel{\mathit{~}}{\mathit{v}}\u3009\mathit{-}{\mathit{v}}_{\mathit{1}}$, where *v*=(*v*_{1},*v*_{2},*v*_{3}) ∈ *LC*^{*}. We call it the *lightcone height function* on γ. For any fixed *v* ∈ *LC*^{*}, we have
${\stackrel{~}{h}}_{v}(s)=\stackrel{~}{H}({s}_{,}v)$. By a straightforward calculation, we have the following proposition.

*Suppose that* γ: *I* → *W* *is a unit speed spacelike curve on W*. *Then we have the following assertions*:

${\stackrel{~}{h}}_{v}({s}_{0})={\stackrel{~}{h}}_{v}^{\prime}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}only\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}v=\u3008\gamma ({s}_{0}{)}_{,}{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}(s\mathrm{o})\u3009{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}({s}_{0}).$

${\stackrel{~}{h}}_{v}({s}_{0})={\stackrel{~}{h}}_{v}^{\prime}({s}_{0})={\stackrel{~}{h}}_{v}^{\u2033}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}only\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}v=\u3008\gamma ({s}_{0}),{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}(s\mathrm{o})\u3009{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathit{a}\mathit{n}\mathit{d}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{\pm}({s}_{0})=0.$

${\overline{h}}_{v}({s}_{0})=\cdots ={\overline{h}}_{v}^{\u2034}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}only\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}if\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}v=\u3008\gamma (s\mathrm{o}{)}_{,}{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}(s\mathrm{o})\u3009{\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{\pm}({s}_{0}),{K}_{L}^{\pm}({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{K}_{L}^{{\pm}^{\prime}}({s}_{o})=0.$

On the other hand, we will introduce some general results on the singularity theory for families of function germs as follows. Let *F* : ℝ × ℝ^{r},(*s*_{0},*x*_{0}))→ ℝ be a function germ. We call *F* an *r*-*parameter unolding* of *f*, where *f(s)*=*F(s,x*_{0}). We say that *f* has an *A _{k}*-

We now introduce important sets concerning the unfoldings relative to the above notions. The *discriminant set* of *F* is the set D_{F}={*x* ∈R^{r}| there exists *s* with
$F={\displaystyle \frac{\mathrm{\partial}F}{\mathrm{\partial}s}=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}at\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}({s}_{,}x)}$}.

The *catastrophe set* of *F* is the set
$${C}_{F}=\{(s,x)|\frac{\mathrm{\partial}F}{\mathrm{\partial}s}({s}_{,}x)=0\}.$$

The * bifurcation set* of *F* is the set *B*_{F}={*x* ∈ R^{r}| there exists *s* with
$\frac{\mathrm{\partial}F}{\mathrm{\partial}s}=\frac{{\mathrm{\partial}}^{2}F}{\mathrm{\partial}{s}^{2}}=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}at\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}({s}_{;}x)\}.$ Then we have the following well-known result (cf. [17]).

*Let F*: (R × R^{2},(*s*_{0},*x*_{0}))→ R *be a* 2-*parameter unolding of f(s) which has an A*_{2}-*singularity at s*_{0}.*Suppose that F is a* R-*versal unolding. Then* D_{F} *is locally diffeomorphic to C. Here*,
$C=\{({x}_{1,}{x}_{2})|{x}_{1}^{2}-{x}_{2}^{3}=0\}$*is the ordinary cusp*.

Now we can apply the above arguments to our case. Let γ : *I* → *W* be a unit speed spacelike curve on *W*, *H* be the lightcone circle height function on
$\gamma ,\overline{H}$be the extended lightcone circle height function on γ and
$\overline{H}$be the lightcone height function on γ. According to Proposition 3.1, we have
${C}_{H}=\{(s,{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s))|s\in I\}$. By Propositions 3.2 and 3.3, we have
${\mathcal{D}}_{\overline{H}}=\{({\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s{)}_{,}\u3008\gamma (s{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s))|s\in I\}$and
${\mathcal{D}}_{\overline{H}}=\{\u3008\gamma (s),{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)\u3009{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)|s\in I\}$. Then we have the following propositon.

*Let* γ : *I* → *W* * be a regular spacelike curve on W, H be the lightcone circle height function on* γ and
$\overline{H}$ *be the extended lightcone circle heightfunction on* γ. *Suppose that*
${v}_{0}={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{h}_{{v}_{0}}(s)=H({s}_{,}{v}_{0})$.*Then the following assertions are equivalent*.

*h*_{v0}*has A*_{2}}-*singularity at s*_{0}.*H is a*R^{+}-*versal unolding of h*_{v0}.$\overline{H}$

*is a*R-*versal unolding of h*_{v0}.

Let $v=({1}_{,}\mathrm{cos}{\theta}_{,}\mathrm{sin}\theta )\in {S}_{+}^{1}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\gamma (s)=({r}_{1}(s{)}_{,}{r}_{2}(s{)}_{,}{r}_{3}(s))\in W$we have $$H({s}_{,}v)=-{r}_{1}(s)+{r}_{2}(s)\mathrm{cos}\theta +{r}_{3}(s)\mathrm{sin}\theta =H({s}_{,}\theta ).$$

By a straightforward calculation, we have $$\frac{\mathrm{\partial}H}{\mathrm{\partial}s}({s}_{;}\theta )=-{r}_{1}^{\prime}(s)+{r}_{2}^{\prime}(s)\mathrm{cos}\theta +{r}_{3}^{\prime}(s)\mathrm{sin}{\theta}_{;}\frac{\mathrm{\partial}H}{\mathrm{\partial}\theta}({s}_{;}\theta )=-{r}_{2}(s)\mathrm{sin}\theta +{r}_{3}(s)\mathrm{cos}\theta .$$

It follows that $$\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}s\mathrm{\partial}\theta}({s}_{;}\theta )=-{r}_{2}^{\prime}(s)\mathrm{sin}\theta +{r}_{3}^{\prime}(s)\mathrm{cos}\theta .$$

For *s*=*s*_{0}, we suppose that
$-{r}_{2}^{\prime}({s}_{0})\mathrm{sin}{\theta}_{0}+{r}_{3}^{\prime}(s)\mathrm{cos}{\theta}_{0}=0$ and
$t({s}_{0})=({r}_{1}^{\prime}({s}_{0}{)}_{,}{r}_{2}^{\prime}({s}_{0}){,}_{}{r}_{3}^{\prime}({s}_{0}))$. Since
$\u3008t({s}_{0}{)}_{,}{v}_{0}\u3009=-{r}_{1}^{\prime}({s}_{0})+{r}_{2}^{\prime}({s}_{0})\mathrm{cos}{\theta}_{0}+{r}_{3}^{\prime}({s}_{0})\mathrm{sin}{\theta}_{0}=0,$, we have
$-{r}_{1}^{\prime}({s}_{0})\mathrm{sin}{\theta}_{0}+{r}_{3}^{\prime}({s}_{0})=0$. Moreover, we also have
$-{r}_{1}^{\prime}({s}_{0})\mathrm{cos}{\theta}_{0}+{r}_{2}^{\prime}({s}_{0})=0$. Therefore,
$t({s}_{0})={r}_{1}^{\prime}({s}_{0})({1}_{;}\mathrm{cos}{\theta}_{0;}\mathrm{sin}{\theta}_{0})$. It follows that *t(s)* is a unit spacelike vector for any *s* ∈ *I*, so we have a contradiction. Thus,
$({\mathrm{\partial}}^{2}H/\mathrm{\partial}s\mathrm{\partial}\theta )({s}_{0},{\theta}_{0})\ne 0$
Therefore, the rank of the matrix
$(-{r}_{2}^{\prime}({s}_{0})\mathrm{sin}{\theta}_{0}+{r}_{3}^{\prime}(s)\mathrm{cos}{\theta}_{0})$is one. We have thus shown that the assertions (1) and (2) are equivalent

On the other hand, for extended lightcone circle height function $\overline{H}$, we have $$\overline{H}({s}_{,}{v}_{,}r)=-{r}_{1}(s)+{r}_{2}(s)\mathrm{cos}\theta +{r}_{3}(s)\mathrm{sin}\theta -r=\overline{H}({s}_{,}{\theta}_{,}r).$$

Thus, $$\frac{\mathrm{\partial}\overline{H}}{\mathrm{\partial}r}({s}_{,}{\theta}_{,}r)=-{1}_{,}\frac{\mathrm{\partial}\overline{H}}{\mathrm{\partial}\theta}({s}_{,}{\theta}_{,}r)=-{r}_{2}(s)\mathrm{sin}\theta +{r}_{3}(s)\mathrm{cos}\theta .$$

It follows that $$\frac{{\mathrm{\partial}}^{2}\overline{H}}{\mathrm{\partial}s\mathrm{\partial}r}({s}_{,}{\theta}_{,}r)={0}_{,}\frac{{\mathrm{\partial}}^{2}\overline{H}}{\mathrm{\partial}s\mathrm{\partial}\theta}({s}_{,}{\theta}_{,}r)=-{r}_{2}^{\prime}(s)\mathrm{sin}\theta +{r}_{3}^{\prime}(s)\mathrm{cos}\theta =\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}s\mathrm{\partial}\theta}({s}_{,}\theta ).$$

Suppose that $$\begin{array}{c}A=\text{\hspace{0.17em}}\left(\begin{array}{c}(\mathrm{\partial}\overline{H}/\mathrm{\partial}\theta )(s0,\theta 0,r0)({\mathrm{\partial}}^{2}\overline{H}/\mathrm{\partial}s\mathrm{\partial}\theta )(s0,\theta 0,r0)\\ (\mathrm{\partial}\overline{H}/\mathrm{\partial}r)(s0,\theta 0,r0)({\mathrm{\partial}}^{2}\overline{H}/\mathrm{\partial}s\mathrm{\partial}r)(s0,\theta 0,r0)\end{array}\right)\\ =\text{\hspace{0.17em}}\left(\begin{array}{c}-r2(s0)\mathrm{sin}\theta 0+r3(s0)\mathrm{cos}\theta 0\text{\hspace{0.17em}}-{r}^{\prime}2(s0)\mathrm{sin}\theta 0+{r}^{\prime}3(s0)\mathrm{cos}\theta 0\text{\hspace{0.17em}}\\ -1\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{\hspace{0.17em}0}\phantom{\rule{thinmathspace}{0ex}}\end{array}\right)\end{array}$$

Since
$({\mathrm{\partial}}^{2}H/\mathrm{\partial}s\mathrm{\partial}\theta )({s}_{0,}{\theta}_{0})\ne 0$, we have
$({\mathrm{\partial}}^{2}\overline{H}/\mathrm{\partial}s\mathrm{\partial}\theta )({s}_{0,}{\theta}_{0,}{r}_{0})\ne 0$. This means that rank*A* =2. Therefore, the assertions (1) and (3) are equivalent. This completes the proof.

We now define a mapping ${P}_{L}^{\pm}:I\to L{C}^{\ast}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{P}_{{L}^{\pm}}(s)=\u3008\gamma (s),{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)\u3009{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)$.

We call it the *lightcone pedal curve*. We also define another mapping
$C{P}_{L}^{\pm}:I\to {S}_{+}^{1}\times {\mathbb{R}}^{\ast}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\text{by}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}C{P}_{L}^{\pm}(s)=({\stackrel{~}{\mathrm{G}}}_{L}^{\pm}(s{)}_{,}\u3008\gamma (s{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)\u3009)$, where ℝ ^{*} = ℝ \ {0}. We call *CP _{L}*

On the other hand, let *F* : *W* → ℝ be a submersion and γ : *I* → *W* be a spacelike curve on *W*. We say that γ and *F*^{−1}(0) have *k-point contact* for t=t_{0} provided the function *g* defined by *g(t)*=*F*(γ(*t*)) satisfies
$$g({t}_{0})={g}^{\prime}({t}_{0})=\cdots ={g}^{(k-1)}({t}_{0})={0}_{,}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}{g}^{(k)}({t}_{0})\ne 0.$$

We also say that the *order of contact* is *k*. Dropping the condition *g ^{(k)}* (

*Let* γ : *I* → *W* * be a spacelike curve on W. For*
${v}_{0}^{\pm}={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}{)}_{,}{s}_{0}\in I$,* we assume that*
${h}_{{v}_{0}}\pm :I\to \mathbb{R}$ *is the lightlike circle height function and*
$I\to L{C}^{\ast}$*is the lightcone pedal curve. Then we have the following*:

(A)*The following conditions are equivalent*.

${K}_{L}^{\pm}({s}_{0})\ne 0.$

${\mathrm{G}}_{L}^{\pm}$

*is non-singular at s*_{0}.*h*_{v0}± has*A*_{1}*singular point*.γ

*and*${S}_{L}^{\pm}({\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}{)}_{,}\u3008\gamma ({s}_{0}{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\u3009)$*have 2-point contact at} s*_{0}.*P*_{L}^{±}*is an immersion at s*_{0}.

(B) *The following conditions are equivalent*.

*K*_{L}^{±}(*s*_{0})=0*and**K*_{L}^{±'}}(*s*_{0})≠ 0.${\stackrel{~}{\mathbb{G}}}_{L}^{\pm}$

*has A*_{1}*singular point at s*_{0}.*h*_{v0}± has*A*_{2}*singular point*.γ

*and*${S}_{L}^{\pm}({\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}{)}_{,}\u3008\gamma ({s}_{0}{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})\u3009)$*have 3-point contact at s*_{0}.*P*_{L}^{±}*is is an ordinary cusp at s*_{0}.$\overline{H}$

*is a R-versal unfolding of h*_{v0}±.*H is a R*^{+}-versal unfolding of h_{v0}±.

We first consider (A). According to Corollary 2.3, the assertions (1) and (2) are equivalent. By Proposition 3.1 (1), the
${K}_{L}^{\pm}({s}_{0})\ne 0$if and only if
$(\mathrm{\partial}{h}_{{v}_{0}}/\mathrm{\partial}s)({s}_{0})=0\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}and\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}({\mathrm{\partial}}^{2}{h}_{{v}_{0}}/\mathrm{\partial}{s}^{2})({s}_{0})\ne 0$.This means that the assertions (1) and (3) are equivalent. Moreover, we define a mapping
$\overline{\mathcal{H}}:W\to \mathbb{R}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}by\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\mathcal{H}(u)=\u3008{u}_{,}{v}_{0}\u3009-{r}_{0}$,
where *v*_{0}∈ *S*_{+}^{1}, *r*_{0} ∈ ℝ. It follows that
$\overline{\mathcal{H}}(\gamma (s))={h}_{{v}_{0}}(s)-{r}_{0}$. Since
${\overline{\mathcal{H}}}^{-1}(0)={S}_{L}({v}_{0,}{r}_{0})$and 0 is a regular value of
$\overline{\mathcal{H}},{h}_{{v}_{0}}$has an *A*_{k}-singularity at *s*_{0} if and only if γ and *S*_{L}(*v*_{0},*r*_{0}) have (*k*+1)-point contact for *s*_{0}. This means that the assertions (3) and (4) are equivalent. By the definition, we have
$C{P}_{L}^{{\pm}^{\prime}}(s)=({\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s{)}_{,}\u3008\gamma (s{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)\u3009)$. It follows that
$C{P}_{L}^{{\pm}^{\prime}}(s)\ne 0$ if and only if
${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)\ne 0$. Since the singular sets of
${P}_{\mathrm{\Lambda}}^{\pm}$are diffeomorphic, we have
$C{P}_{L}^{{\pm}^{\prime}}(s)\ne 0$if and only if
${P}_{L}^{{\pm}^{\prime}}(s)\ne 0$. Therefore, the assertions (2) and (5) are equivalent.

On the other hand, we consider (B). By Proposition 3.1 (2), the assertions (1) and (3) are equivalent. Moreover, by Proposition 3.1 (1), we have $(\mathrm{\partial}H/\mathrm{\partial}s)(s,{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s))=0$. If we take the derivative of the equation, then we have $\frac{d}{ds}(\frac{\mathrm{\partial}H}{\mathrm{\partial}s})({s}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s))=\frac{\mathrm{\partial}{}^{2}H}{\mathrm{\partial}{s}^{2}}({s}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s))+\frac{\mathrm{\partial}{}^{2}H}{\mathrm{\partial}s\mathrm{\partial}v}({s}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}(s)=0.$

For *s*=*s*_{0}, we have
${h}_{{v}_{0}}^{\u2033}({s}_{0})+{\mathrm{\partial}}^{2}H/\mathrm{\partial}s\mathrm{\partial}v)({s}_{0,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}({s}_{0})=0$where
${v}_{0}={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})$. By the proof of Proposition 3.5, we have
$({\mathrm{\partial}}^{2}H/\mathrm{\partial}s\mathrm{\partial}v)({s}_{0,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0}))\ne 0$. It follows that
${h}_{{v}_{0}}^{\u2033}({s}_{0})=0$if and only if
${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}({s}_{0})=0.$By a similar calculation as above, we have
${h}_{{v}_{0}}^{\u2034}({s}_{0})+({\mathrm{\partial}}^{2}H/\mathrm{\partial}s\mathrm{\partial}v)({s}_{0,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}({s}_{0})){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})=0$. This means that
${h}_{{v}_{0}}^{\u2034}({s}_{0})=0$if and only if
${\stackrel{~}{\mathrm{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})=0$. Therefore, the assertions (2) and (3) are equivalent. Moreover, if we consider the mapping
$\overline{\mathcal{H}}:W\to \mathbb{R}$ defined in the proof of (A), then we obtain that the assertions (3) and (4) are equivalent. Furthermore, we consider the cylindrical lightcone pedal curve
$$C{P}_{L}^{\pm}(s)=({\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s{)}_{,}\u3008\gamma (s{)}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)\u3009)=({\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s{)}_{,}H({s}_{,}{\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(s)))$$

and denote $${v}^{(k)}={\stackrel{~}{\mathbb{G}}}_{L}^{\pm (k)}(s)(k={0}_{,}{1}_{,}{2}_{,}3)$$ and $$v0={\stackrel{~}{\mathbb{G}}}_{L}^{\pm}(so)$$.Then we have $$C{P}_{L}^{{\pm}^{\prime}}(s)=({v}_{;}^{\prime}\frac{\mathrm{\partial}H}{\mathrm{\partial}v}({s}_{,}v){v}^{\prime}{)}_{,}$$ $$C{P}_{L}^{{\pm}^{\u2033}}(s)=({v}^{\u2033},\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}{s}^{2}}({s}_{,}v)+2\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}v\mathrm{\partial}s}({s}_{,}v){v}^{\prime}+\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}{v}^{2}}({s}_{,}v)({v}^{\prime}{)}^{2}+\frac{\mathrm{\partial}H}{\mathrm{\partial}v}({s}_{,}v){v}^{\u2033}{)}_{,}$$ $$C{P}_{L}^{{\pm}^{\u2034}}(s)=({v}^{\u2034},\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}{s}^{3}}({s}_{,}v)+3\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}v\mathrm{\partial}{s}^{2}}({s}_{,}v){v}^{\prime}+3\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}{v}^{2}\mathrm{\partial}s}({s}_{,}v)({v}^{\prime}{)}^{2}+\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}{v}^{3}}({s}_{,}v)({v}^{\prime}{)}^{3}+3\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}{v}^{2}}({s}_{,}v){v}^{\prime}{v}^{\u2033}+3\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}v\mathrm{\partial}s}({s}_{,}v){v}^{\u2033}+\frac{\mathrm{\partial}H}{\mathrm{\partial}v}({s}_{,}v){v}^{\u2034}).$$

The previous discussion shows that
$C{P}_{L}^{{\pm}^{\prime}}({s}_{0})=0$ if and only if ${\mathrm{G}}_{L}^{{\pm}^{\prime}}({s}_{0})=0.$ Then we obtain that *CP*_{L}^{±} (*s*_{0}) is an ordinary cusp if and only if
${\stackrel{\mathbb{~}}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}({s}_{0})=0$ and *CP*_{L}^{±}″(*s*_{0}), *CP*_{L}^{±}‴(*s*_{0}) are linearly independent, where we have used the well-known fact that *CP*_{L}^{±}(*s*_{0}) is an ordinary cusp if and only if
$C{P}_{L}^{{\pm}^{\prime}}({s}_{0})=0$ and $C{P}_{L}^{{\pm}^{\u2033}}({s}_{0}),C{P}_{L}^{{\pm}^{\u2034}}({s}_{0})$ are linearly independent. Moreover, we denote
$$A=\left(\begin{array}{ll}{\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}{s}^{2}}({s}_{0},{v}_{0})+\frac{\mathrm{\partial}H}{\mathrm{\partial}v}({s}_{0},{v}_{0}){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})& \\ {\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2034}}({s}_{0})\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}{s}^{3}}({s}_{0},{v}_{0})+3\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}s\mathrm{\partial}v}({s}_{0},{v}_{0}){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})+\frac{\mathrm{\partial}H}{\mathrm{\partial}v}({s}_{0},{v}_{0}){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2034}}({s}_{0})\end{array}\right).$$
$$B=\left(\begin{array}{ll}{\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}{s}^{2}}({s}_{0},{v}_{0})& \\ {\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2034}}({s}_{0})\frac{{\mathrm{\partial}}^{3}H}{\mathrm{\partial}{s}^{3}}({s}_{0},{v}_{0})+3\frac{{\mathrm{\partial}}^{2}H}{\mathrm{\partial}s\mathrm{\partial}v}({s}_{0},{v}_{0}){\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})\end{array}\right).$$

Then rank *A* = rank *B*. Since the assertions (2) and (3) are equivalent, condition (2) or (3) holds if and only if
${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}({s}_{0})=0,{\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\u2033}}({s}_{0})\ne 0$ and ${h}_{{v}_{0}}^{\prime}({s}_{0})={h}_{{v}_{0}}^{\u2033}({s}_{0})=0,{h}_{{v}_{0}}^{\u2034}({s}_{0})\ne 0.$ Therefore, the assertion (2)is equivalent to the conditions ${\stackrel{~}{\mathbb{G}}}_{L}^{{\pm}^{\prime}}({s}_{0})=0,$ rank *B* = 2. Thus, the assertions (2), (3) and (5) are equivalent. By Proposition 3.5, we have the assertions (3), (6) and (7) are equivalent. This completes the proof.

This work is supported by NSF of China (Grant No. 11101072) and STDP of Jilin Province (Grant No. 20150520052JH).

The author would like to thank Professor Shyuichi Izumiya and Professor Masatomo Takahashi for their constructive suggestions.

The author would like to thank the referee for helpful comments to improve the original manuscript.

- [1]
Banchoff Th., Gaffney T., McCrory C., Cusps of Gauss mappings, Research Notes in Mathematics, 55. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982 Google Scholar

- [2]
Bruce J. W., Generic geometry and duality Singularities (Lille, 1991), 2959, London Math. Soc., Lecture Note Ser., 201, Cambridge Univ. Press, Cambridge, 1994Google Scholar

- [3]
Bruce J. W., Generic geometry transversality and projections, J. London Math. Soc., 1994,(2) 49, 183–194Google Scholar

- [4]
Chen L., On spacelike surfaces in Anti de Sitter3-space from the contact viewpoint, Hokkaido Math. J., 2009, 38, 701–720Google Scholar

- [5]
Chen L., Han Q. X., Pei D. H., Sun W. Z., The singularities of null surfaces in Anti de Sitter3-space, J. Math. Anal. Appl., 1986, 366, 256–265Google Scholar

- [6]
Chen L., Izumiya S., Singularities of Anti de Sitter torus Gauss maps, Bull. Braz. Math. Soc., (N.S.) 2010, 41, 37–61Google Scholar

- [7]
Chen L., Izumiya S., Pei D. H., Saji K, Anti de Sitter horospherical flat timelike surfaces, Sci. China Math., 2014, 57, 1841–1866Google Scholar

- [8]
Izumiya S., Pei D. H., Sano T., Singularities of hyperbolic Gauss maps, Proc. London. Math. Soc., 2003, 86, 485–512Google Scholar

- [9]
Izumiya S., Pei D. H., Romero Fuster M. C., Takahashi M., The horospherical geometry of submanifolds in hyperbolic space, J. London Math. Soc., 2005, 71, 779–800Google Scholar

- [10]
Izumiya S., Romero Fuster M. C., The horospherical Gauss-Bonnet type theorem in hyperbolic space, J. Math. Soc. Japan, 2006, 58, 965–984Google Scholar

- [11]
Izumiya S., Takahashi M., Spacelike parallels and evolutes in Minkowski pseudo-spheres, J. Geom. Phys., 2007, 57, 1569–1600Google Scholar

- [12]
Izumiya S., Jiang Y., Pei D. H., Lightcone dualities for curves in the sphere, Quart. J. Math., 2013, 64, 221–234Google Scholar

- [13]
Mochida D. K. H., Romero Fuster M. C., Ruas M. A. S., The geometry of surfaces in 4-space from a contact viewpoint, Geom. Dedicata, 1995, 54, 323–332Google Scholar

- [14]
Mochida D. K. H., Romero Fuster M. C., Ruas M. A. S., Osculating hyperplanes and asymptotic directions of codimension two submanifolds of Euclidean spaces, Geom. Dedicata, 1999, 77, 305–315Google Scholar

- [15]
Porteous I. R., The normal singularities of a submanifold, J. Diff. Geom., 1971, 5, 543–564Google Scholar

- [16]
Romero Fuster M. C., Sphere stratifications and the Gauss map, Proc. Roy Soc. Edinburgh Sect. A, 1983, 95, 115–136 Google Scholar

- [17]
Bruce J. W., Giblin P. J., Curves and singularities (second edition), Cambridge Univ. Press, 1992 Google Scholar

- [18]
O’Neil B., Semi-Riemannian Geometry Academic Press, New York, 1983 Google Scholar

**Received**: 2016-03-10

**Accepted**: 2016-09-02

**Published Online**: 2016-11-14

**Published in Print**: 2016-01-01

**Citation Information: **Open Mathematics, Volume 14, Issue 1, Pages 889–896, ISSN (Online) 2391-5455, DOI: https://doi.org/10.1515/math-2016-0072.

© 2016 Chen, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

## Comments (0)