[1]

Abdeljawad T., On conformable fractional calulus, preprint. Google Scholar

[2]

Anderson D.R., Avery R.I., Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electron. J. Differ. Equ., Volume 2015, 29, 1-10, 2015. Google Scholar

[3]

Anderson D.R., Ulness D.J., Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J. Math. Phys 56, 063502, 2015. Google Scholar

[4]

Atangana A., Goufo E.F.D., Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems, Mathematical Problems in Engineering, Volume 2014, 107535, 7 pages. Google Scholar

[5]

Atangana A., Noutchie S.C.O., Model of Break-Bone Fever via Beta-Derivatives, BioMed Research International, Volume 2014, 523159, 10 pages. Google Scholar

[6]

Babakhani A., Daftardar-Gejji V, On calculus of local fractional derivatives, J. Math. Anal. Appl. 270 (1), 66-79, 2002. Google Scholar

[7]

Batarfi H., Losada J., Nieto J.J., Shammakh W., Three-point boundary value problems for conformable fractional differential equations, Journal of function spaces, Volume 2015, 706383, 6 pages. Google Scholar

[8]

Çenesiz Y, Kurt A., The solution of time fractional heat equation with new fractional derivative definition, in Recent Advances in Applied Mathematics, Modelling and Simulation (eds N.E. Mastorakis, M. Demiralp, N. Mukhopadhyay and F. Mainardi) North Atlantic University Union, 195-198, 2014. Google Scholar

[9]

Chen Y, Yan Y, Zhang K., On the local fractional derivative, J. Math. Anal. Appl. 362 (1), 17-33, 2010. Google Scholar

[10]

Abu Hammad M., Khalil R., Legendre fractional differential equation and Legender fractional polynomials, Int. J. Appl. Math. Res. 3(3), 214-219, 2014. Google Scholar

[11]

Hesameddini E., Asadollahifard E., Numerical solution of multi-order fractional differential equations via the sinc collocation method, Iran. J. Numer. Anal. Optim. 5 (1), 37-48, 2015. Google Scholar

[12]

Katumgapola U., A new fractional derivative with classical properties, preprint. Google Scholar

[13]

Khalil R., Al Horani M., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math. 264. 65-70, 2014. Google Scholar

[14]

Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. Google Scholar

[15]

Kolwankar K.M., Gangal A.D., Fractional differentiability of nowhere differentiable functions and dimension, Chaos 6, 505-513, 1996. Google Scholar

[16]

Kolwankar K.M., Gangal A.D., Hölder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48, 49-68, 1997. Google Scholar

[17]

Podlubny I., Fractional differential equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. Google Scholar

[18]

Ünal E., Gǒkdogan A., Çelik E., Solutions around a regular α singular point of a sequential conformable fractional differential equation, preprint. Google Scholar

## Comments (0)