[1]

Wang X.H., Huang C.Y., Permanence of a stage-structured predator-prey system with impulsive stocking prey and harveting predator, Appl. Math. Comput., 2014, 235, 32-42 CrossrefGoogle Scholar

[2]

Mukherjee D., Permanence and global attractivity for facultative mutualism system with delay, Math. Methods Appl. Sci., 2003, 26, 1-9 CrossrefGoogle Scholar

[3]

Zhao J.D., Jiang J.F., Average conditons for permanence and extinction in nonantonomous Lotka-Volterra system, J. Math. Anal. Appl., 2004, 299, 663-675 CrossrefGoogle Scholar

[4]

Teng Z.D., Zhang Y., Gao S.J., Permanence criteria for general delayed discrete nonautonomous -species Kolmogorov systems and its applications, Comput. Math. Appl., 2010, 59, 812-828 CrossrefWeb of ScienceGoogle Scholar

[5]

Liu Z.J., Zhong S.M., Liu X.Y., Permanence and periodic solutions for an impulsive reaction-diffusion food-chain system with ratiodependent functional response, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, 173-188 CrossrefGoogle Scholar

[6]

Chen F.D., Permanence of a discrete n-species food-chain system with time delays, Appl. Math. Comput., 2007, 185, 719-726 Web of ScienceCrossrefGoogle Scholar

[7]

Dhar J., Jatav K.S., Mathematical analysis of a delayed stage-structured predator-prey model with impulsive diffusion between two predators territories, Ecol. Complex., 2013, 16, 59-67CrossrefWeb of ScienceGoogle Scholar

[8]

Liu S.Q., Chen L.S., Necessary-sufficient conditions for permanence and extinction in lotka-volterra system with distributed delay, Appl. Math. Lett., 2003, 16, 911-917CrossrefGoogle Scholar

[9]

Liao X.Y., Zhou S.F., Chen Y.M., Permanence and global stability in a discrete n-species competition system with feedback controls, Nonlinear Anal.: Real World Appl., 2008, 9, 1661-1671CrossrefGoogle Scholar

[10]

Hu H.X., Teng Z.D., Jiang H.J., On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Anal.: Real World Appl., 2009, 10, 1803-1815CrossrefGoogle Scholar

[11]

Muroya Y., Permanence and global stability in a Lotka-Volterra predator-prey system with delays, Appl. Math. Lett., 2003, 16, 1245-1250CrossrefGoogle Scholar

[12]

Hou Z.Y., On permanence of Lotka-Volterra systems with delays and variable intrinsic growth rates, Nonlinear Anal.: Real World Appl., 2013, 14, 960-975CrossrefGoogle Scholar

[13]

Xiong X.S., Zhang Z.Q., Periodic solutions of a discrete two-species competitive model with stage structure, Math. Comput. Modelling, 2008, 48, 333-343CrossrefWeb of ScienceGoogle Scholar

[14]

Zhang R.Y., Wang Z.C., Chen Y.M., Wu J.H., Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput. Math. Appl., 2009, 39, 77-90.Google Scholar

[15]

Takeuchi Y., Global Dynamical Properties of Lotla-Volterra Systems, World Scientific, River Edge, NJ, USA, 1996Google Scholar

[16]

Sun Y.G., Saker S.H., Positive periodic solutions of discrete three-level food-chain model of Holling type II, Appl. Math. Comput., 2006, 180, 353-365Google Scholar

[17]

Ding X.H., Liu C., Existence of positive periodic solution for ratio-dependent N-species difference system, Appl. Math. Modelling, 2009, 33, 2748-2756Web of ScienceCrossrefGoogle Scholar

[18]

Li Z.C., Zhao Q.L., Ling D., Chaos in a discrete population model, Discrete Dyn. Nat. Soc., 2012, 2012, Ariticle ID 482459, 14 pagesWeb of ScienceGoogle Scholar

[19]

Xiang H., Yang K.M., Wang B.Y., Existence and global stability of periodic solution for delayed discrete high-order hopfifled-type neural networks, Discrete Dyn. Nat. Soc., 2005, 2005, 281-297CrossrefGoogle Scholar

[20]

Lu C., Zhang L.J., Permanence and global attractivity of a discrete semi-ratio dependent predator-prey system with Holling II type functional response, J. Appl. Math. Comput., 2010, 33, 125-135CrossrefGoogle Scholar

[21]

Xu J.B., Teng Z.D., Jiang H.J., Permanence and global attractivity for discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls, Period Math Hung., 2011, 63, 19-45CrossrefWeb of ScienceGoogle Scholar

[22]

Chen F.D., You M.S., Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 2007, 186, 30-34Web of ScienceGoogle Scholar

[23]

Chen F.D., Permanence in a discrete Lotka-Volterra competition model with deviating arguments, Nonlinear Anal.: Real World Appl., 2008, 9, 2150-2155 CrossrefGoogle Scholar

[24]

Tian X.H., Nie Q.K., On model construction of enterprises’ interactive relationship from the perspective of business ecosystem, South. Econ. J., 2006, 4, 50-57 Google Scholar

[25]

Liao M.X., Xu C.J., Tang X.H., Dynamical behavior for a competition and cooperation model of enterpries with two delays, Nonlinear Dyn., 2014, 75, 257-266 CrossrefGoogle Scholar

[26]

Liao M.X., Xu C.J., Tang X.H., Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, 3845-3856 CrossrefWeb of ScienceGoogle Scholar

[27]

Li Y.K., Zhang T.W., Global asymptotical stability of a unique almost periodic solution for enterprise clusters based on ecology theory with time-varying delays and feedback controls, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, 904-913 CrossrefWeb of ScienceGoogle Scholar

[28]

Xu C.J., Periodic behavior of competition and corporation dynamical model of two enterprises on time scales, J. Quant. Econ., 2012, 29, 1-4 Google Scholar

[29]

Xu C.J., Shao Y.F., Existence and global attractivity of periodic solution for enterprise clusters based on ecology theory with impulse, J. Appl. Math. Comput., 2012, 39, 367-384 CrossrefGoogle Scholar

[30]

Agarwal R.P., Difference Equations and Inequalities: Theory, Method and Applications, vol. 228 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2nd edition, 2000 Google Scholar

[31]

Li Y.K., Lu L.H., Positive periodic solutions of discrete n-species food-chain systems, Appl. Math. Comput., 2005, 167, 324-344CrossrefGoogle Scholar

[32]

Chen X., Chen F.D., Stable periodic solution of a discrete periodic Lotka-Volterra competition system with a feedback control, Appl. Math. Comput., 2006, 181, 1446-1454Google Scholar

[33]

Muroya Y., Persistence and global stability in Lotka-Volterra delay differential systems, Appl. Math. Lett., 2004, 17, 795-800CrossrefGoogle Scholar

[34]

Muroya Y., Partial survival and extinction of species in discrete nonautonomous Lotka-Volterra systems, Tokyo J. Math., 2005, 28, 189-200CrossrefGoogle Scholar

[35]

Yang X.T., Uniform persistence and periodic solutions for a discrete predator-prey system with delays, J. Math. Anal. Appl., 2006, 316, 161-177CrossrefGoogle Scholar

[36]

Chen F.D., Permanence for the discrete mutualism model with time delays, Math. Comput. Modelling, 2008, 47, 431-435CrossrefWeb of ScienceGoogle Scholar

[37]

Zhang W.P., Zhu D.M., Bi P., Multiple periodic positive solutions of a delayed discrete predator-prey system with type IV functional responses, Appl. Math. Lett., 2007, 20, 1031-1038CrossrefWeb of ScienceGoogle Scholar

[38]

Chen Y.M., Zhou Z., Stable periodic of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl., 2003, 277, 358-366CrossrefGoogle Scholar

[39]

Li X.P., Yang W.S., Permanence of a discrete model of mutualism with infinite deviating arguments, Discrete Dyn. Nat. Soc., 2010, 2010, Article ID 931798, 7 pagesWeb of ScienceGoogle Scholar

[40]

Li X.P., Yang W.S., Permanence of a discrete predator-prey systems with Beddington-DeAngelis functional response and feedback controls, Discrete Dyn. Nat. Soc., 2008, 2008, Article ID 149267, 8 pagesWeb of ScienceGoogle Scholar

[41]

Chen F.D., Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 2006, 182, 3-12 Google Scholar

[42]

Zhou H., Enterprises cluster co-existence model and stability analysis, Syst. Eng., 2003, 21, 32-37 Google Scholar

[43]

Guo Q., Competitive strages in an enterprises: an ecological model, Contem. Econ. Manage, 2005, 27, 49-52Google Scholar

[44]

Zhang R., Qian X.S., Gao Z.A., A competitive model of enterprises based on ecology theory, Syst. Eng., 2008, 26, 116-119 Google Scholar

[45]

Wang L., Wang M.Q., Ordinary Difference Equation, Xinjiang University Press, China, 1991 Google Scholar

[46]

Zhi Y.H., Ding Z.L., Li Y.K., Permanence and almost periodic solution for an enterprise cluster model based on ecology theory with feedback controls on time scales, Discrete Dyn. Nat. Soc., 2013, 2013, Article ID 639138, 14 pages Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.