[1]

Aigner M., Combinatorial theory, Springer Science and Business Media, 2012. Google Scholar

[2]

Aliev I., De Loera J.A., Louveaux Q., Integer programs with prescribed number of solutions and a weighted version of Doignon-Bell-Scarf’s theorem, Springer International Publishing, 2014. Google Scholar

[3]

Amadio R.M., Curien P.L., Domains and lambda-calculi, Cambridge University Press, 1998. Google Scholar

[4]

Birkhoff G., Lattice theory, American Mathematical Society, 1948. Google Scholar

[5]

Boole G., An investigation of the laws of thought:on which are founded the mathematical theories of logic and probabilities, Dover Publications, 1854.Google Scholar

[6]

Bollobas B., Graph theory: an introductory course, Springer Science and Business Media, 2012. Google Scholar

[7]

Borgwardt S., Peńaloza R., Consistency reasoning in lattice-based fuzzy description logics, Internat. J. Approx. Reason., 2014, 55, 1917-1938. CrossrefGoogle Scholar

[8]

Chajda I., Complemented ordered sets, Arch. Math., 1992, 28, 25-34. Google Scholar

[9]

Crapo H.H., Rota G.C., On the foundations of combinatorial theory:combinatorial geometries, The MIT Press, 1970. Google Scholar

[10]

Czédli G., Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices, Algebra universalis, 2012, 67, 313-345.Web of ScienceCrossrefGoogle Scholar

[11]

Davey B.A., Priestley H.A., Introduction to lattices and order, Cambridge university press, 2002. Google Scholar

[12]

David E., Erné M., Ideal completion and Stone representation of ideal-distributive ordered sets, Topology Appl., 1992, 44(1), 95-113. CrossrefGoogle Scholar

[13]

Deraux M., Parker J.R., Paupert J., New non-arithmetic complex hyperbolic lattices, Invent. Math., 2014, 1-91. Web of ScienceGoogle Scholar

[14]

Epstein J.M., Generative social science:Studies in agent-based computational modeling, Princeton University Press, 2006. Google Scholar

[15]

Epstein J.M., Remarks on the foundations of agent-based generative social science, Handbook of Computational Economics, 2006, 2, 1585-1604. CrossrefGoogle Scholar

[16]

Erné M., Wilke G., Standard completions for quasiordered sets, Semigroup Forum, 1983, 27(1), 351-376. CrossrefGoogle Scholar

[17]

Erné M., The Dedekind-MacNeille completion as a reflector, Order, 1991, 8(2), 159-173. CrossrefGoogle Scholar

[18]

Erné M., Prime and maximal ideals of partially ordered sets, Math. Slovaca, 2006, 56(1), 1-22. Google Scholar

[19]

Erné M., Joshi V., Ideals in atomic posets, Discrete Math., 2015, 338(6), 954-971. CrossrefWeb of ScienceGoogle Scholar

[20]

Gierz G., Continuous lattices and domains, Cambridge University Press, 2003. Google Scholar

[21]

Gierz G., Hofmann K.H., Keimel K., A compendium of continuous lattices, Springer Science and Business Media, 2012. Google Scholar

[22]

Godsil C., Royle G.F., Algebraic graph theory, Springer Science and Business Media, 2013. Google Scholar

[23]

Grätzer G., Lattice theory:First concepts and distributive lattices, Courier Corporation, 2009. Google Scholar

[24]

Grätzer G., Lattice theory:foundation, Springer Science and Business Media, 2011. Web of ScienceGoogle Scholar

[25]

Grätzer G., Wehrung F., Lattice theory:special topics and applications, Springer, 2014. Google Scholar

[26]

Halaš R., Pseudocomplemented ordered sets, Arch. Math., 1993, 29(2), 153-160. Google Scholar

[27]

Halaš R., Rachånek J., Polars and prime ideals in ordered sets, Discuss. Math., 1995, 15, 43-59.Google Scholar

[28]

Halaš R., Ideals and annihilators in ordered sets, Czech. Math. J., 1995, 45, 127-134.Google Scholar

[29]

Halaš R., Relative polars in ordered sets, Czechoslovak Math. J., 2000, 50(2), 415-429. CrossrefGoogle Scholar

[30]

Jenča G., The block structure of complete lattice ordered effect algebras, J. Aust. Math. Soc., 2007, 83, 181-216. CrossrefGoogle Scholar

[31]

Niederle J., Boolean and distributive ordered sets: characterization and representation by sets, Order, 1995, 12(2), 189-210. CrossrefGoogle Scholar

[32]

Kaburlasos V.G., Athanasiadis I.N., Mitkas P.A., Fuzzy lattice reasoning classifier and its application for ambient ozone estimation, Internat. J. Approx. Reason., 2007, 45(1), 152-188. CrossrefGoogle Scholar

[33]

Kharat V.S., Mokbel K.A., Semiprime ideals and separation theorems for posets, Order, 2008, 25(3), 195-210. CrossrefWeb of ScienceGoogle Scholar

[34]

Ma X., Zhan J., Jun Y.B., Some kinds of falling fuzzy filters of lattice implication algebras, Appl. Math. J. Chinese Univ. Ser. A., 2015, 30(3), 299-316. CrossrefWeb of ScienceGoogle Scholar

[35]

Merrifield R.E., Simmons H.E., Topological methods in chemistry, New York etc., 1989. Google Scholar

[36]

Moon J.W., Topics on Tournaments in Graph Theory, Courier Dover Publications, 2015. Google Scholar

[37]

Narayana T.V., Lattice path combinatorics, with statistical applications, Univ of Toronto Pr., 1979. Google Scholar

[38]

Rasouli H., Completion of S-posets, Semigroup Forum, 2012, 1-6. Web of ScienceGoogle Scholar

[39]

Rine D.C., Computer science and multiple-valued logic:theory and applications, Elsevier, 2014. Google Scholar

[40]

Satya Saibaba G.S.V., Fuzzy lattice ordered groups, Southeast Asian Bull. Math., 2008, 32(4), 58-60. Google Scholar

[41]

Šešelja B., Stepanović V., Tepavčević A.,A note on representation of lattices by weak congruences, Algebra universalis, 2012, 68(3-4), 287-291. CrossrefWeb of ScienceGoogle Scholar

[42]

Šešelja B., Tepavčević A., LE-fuzzy lattices, Int.J. Fuzzy Syst., 2015, 17(3), 366-374. CrossrefGoogle Scholar

[43]

Takagi T., Combinatorial aspects of the conserved quantities of the tropical periodic Toda lattice, J. Phys. A., 2014, 47(39), 395-201. Web of ScienceGoogle Scholar

[44]

Warner M.W., Fuzzy topology with respect to continuous lattices, Fuzzy Sets and Systems, 1990, 35(1), 85-91. CrossrefGoogle Scholar

[45]

Waphare B.N., Joshi V., Characterizations of standard elements in posets, Order, 2004, 21(1), 49-60. CrossrefGoogle Scholar

[46]

Waphare B.N., Joshi V., On uniquely complemented posets, Order, 2005, 22(1), 11-20. CrossrefGoogle Scholar

[47]

Yang X., Qian Y.H., Yang J., On characterizing hierarchies of granulation structures via distances, Fund. Informat., 2013 123(3), 365-380. Google Scholar

[48]

Zhan J., Jun Y.B., Notes on redefined fuzzy implicative filters of lattice implication algebras, Inform. Sci., 2009, 179(18), 31823186. CrossrefWeb of ScienceGoogle Scholar

[49]

Zhao D„ Fan T., Dcpo-completion of posets, Theoret. Inform. Sci., 2010, 411(22), 2167-2173. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.