[1]

Talbi, E.G., Metaheuristics: from design to implementation, Wiley Publishing, 2009, ISBN 0470278587, 9780470278581. Google Scholar

[2]

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A., Rich vehicle routing problem: survey, ACM Comput Surv, 2014, 47(2),1–28. Google Scholar

[3]

Talbi, E.G., Combining metaheuristics with mathematical programming, constraint programming and machine learning, 4OR, 2013, 11(2),101–150. Google Scholar

[4]

Maniezzo, V., Stützle, T., Vo, S., Matheuristics: hybridizing metaheuristics and mathematical programming, Springer Publishing Company, Incorporated, 1st ed., 2009, ISBN 144191305X, 9781441913050. Google Scholar

[5]

Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G., A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems, Operations Research Perspectives, 2015, 2,62–72. Google Scholar

[6]

Calvet, L., Ferrer, A., Gomes, M.I., Juan, A.A., Masip, D., Combining statistical learning with metaheuristics for the multidepot vehicle routing problem with market segmentation, Comput Ind Eng, 2016, 94(C),93–104. Google Scholar

[7]

Boussaïd, I., Lepagnot, J., Siarry, P., A survey on optimization metaheuristics, Inf Sci, 2013, 237,82–117. Google Scholar

[8]

Dorigo, M., Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico di Milano, Italy, 1992. Google Scholar

[9]

Farmer, J.D., Packard, N.H., Perelson, A.S., The immune system, adaptation, and machine learning, Phys D,1986, 2(1-3),187–204. Google Scholar

[10]

Holland, J.H., Outline for a logical theory of adaptive systems, Journal of the ACM, 1962, 3(9),297–314. Google Scholar

[11]

Feo, T.A., Resende, M.G.C., A probabilistic heuristic for a computationally difficult set covering problem, Oper Res Lett, 1989, 8(2),67–71. Google Scholar

[12]

Martin, O., Otto, S.W., Felten, E.W., Large-step Markov Chains for the TSP incorporating local search heuristics, Oper Res Lett, 1992, 11(4),219–224. Google Scholar

[13]

Kennedy, J., Eberhart, R.C., Particle swarm optimization, In: Proceedings of the IEEE International Conference on Neural Networks. 1995, p.1942–1948. Google Scholar

[14]

Glover, F., Heuristics for integer programming using surrogate constraints, Decision Sci, 1977, 8(1),156–166. Google Scholar

[15]

Kirkpatrick, S., Optimization by simulated annealing: quantitative studies, Journal of statistical physics, 1984, 34(5-6),975–986. Google Scholar

[16]

Glover, F., Future paths for integer programming and links to artificial intelligence, Comput Oper Res, 1986, 13(5),533–549. Google Scholar

[17]

Mladenovic, N., A variable neighborhood algorithm: a new metaheuristic for combinatorial optimization, Abstracts of papers presented at Optimization Days, 1995, 112. Google Scholar

[18]

Sörensen, K., Metaheuristics—the metaphor exposed, International Transactions in Operational Research, 2015, 22(1),3–18. Google Scholar

[19]

Feo, T.A., Resende, M.G.C., Greedy randomized adaptive search procedures, J Global Optim, 1995, 6(2),109–133. Google Scholar

[20]

Gendreau, M., Potvin, J.Y., Handbook of metaheuristics, Springer Publishing Company, Incorporated, 2nd ed.,2010, ISBN 1441916636, 9781441916631. Google Scholar

[21]

Barber, D., Bayesian reasoning and machine learning, New York, NY, USA: Cambridge University Press, 2012, ISBN 0521518148, 9780521518147. Google Scholar

[22]

Lantz, B., Machine learning with R, Packt Publishing, 2013, ISBN 1782162143, 9781782162148. Google Scholar

[23]

Potvin, J.Y., Smith, K.A., Artificial neural networks for combinatorial optimization, Boston, MA: Springer US, 2003, p. 429–455. Google Scholar

[24]

Smith, K.A., Neural networks for combinatorial optimization: a review of more than a decade of research, INFORMS J on Computing, 1999, 11(1),15–34. Google Scholar

[25]

Jourdan, L., Dhaenens, C., Talbi, E.G., Using datamining techniques to help metaheuristics: a short survey, In: International Workshop on Hybrid Metaheuristics. Gran Canaria, Spain: Springer Berlin Heidelberg, 2006, p. 57–69. Google Scholar

[26]

Zhang, J., Zhang, Z.h., Lin, Y., Chen, N., Gong, Y.j., Zhong, J.h., et al., Evolutionary computation meets machine learning: a survey, Comp Intell Mag, 2011, 6(4), 68–75. Google Scholar

[27]

Corne, D., Dhaenens, C., Jourdan, L., Synergies between operations research and data mining: the emerging use of multiobjective approaches, Eur J Oper Res, 2012, 221(3),469–479. Google Scholar

[28]

Freitas, A., A review of evolutionary algorithms for data mining, In: Soft computing for knowledge discovery and data mining. Springer, 2008, p. 79–111. Google Scholar

[29]

Dhaenens, C., Jourdan, L., Metaheuristics for big data, Wiley,2016, ISBN 9781119347606. Google Scholar

[30]

De Jong, K., Parameter setting in EAs: a 30 year perspective, In: Lobo, F., Lima, C., Michalewicz, Z., editors. Parameter setting in evolutionary algorithms. Springer, 2007, p.1–18. Google Scholar

[31]

Jeong, S.J., Kim, K.S., Lee, Y.H., The efficient search method of simulated annealing using fuzzy logic controller, Expert Syst Appl, 2009, 36(3),7099–7103. Google Scholar

[32]

Zennaki, M., Ech-Cherif, A., A new machine learning based approach for tuning metaheuristics for the solution of hard combinatorial optimization problems, Journal of Applied Sciences, 2010, 10(18),1991–2000. Google Scholar

[33]

Lessmann, S., Caserta, M., Arango, I.M., Tuning metaheuristics: a data mining based approach for particle swarm optimization, Expert Syst Appl, 2011, 38(10), 12826–12838. Google Scholar

[34]

Gunawan, A., Lau, H.C., Wong, E., Real-world parameter tuning using factorial design with parameter decomposition, New York, NY: Springer New York, ISBN 978-1-4614-6322-1, 2013, p. 37–59. Google Scholar

[35]

Ramos, I.C.O., Goldbarg, M.C., Goldbarg, E.G., Neto, A.D.D., Logistic regression for parameter tuning on an evolutionary algorithm, In: IEEE Congress on Evolutionary Computation. Edinburgh, Scotland: IEEE, 2005, p.1061–1068. Google Scholar

[36]

Bartz-Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N., Design and analysis of optimization algorithms using computational statistics, Applied Numerical Analysis & Computational Mathematics, 2004, 1(2), 413–433. Google Scholar

[37]

Pavón, R., Díaz, F., Laza, R., Luzón, M.V., Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study, Expert Syst Appl, 2009, 36,3407–3420. Google Scholar

[38]

Pereira, I., Madureira, A., de Moura Oliveira, P.B., Abraham, A., Tuning meta-heuristics using multi-agent learning in a scheduling system, In: Transactions on Computational Science XXI. Springer Berlin Heidelberg, 2013, p.190–210. Google Scholar

[39]

Ries, J., Beullens, P., Salt, D., Instance-specific multi-objective parameter tuning based on fuzzy logic, Eur J Oper Res, 2012, 218(2),305–315. Google Scholar

[40]

Caserta, M., Rico, E.Q., A cross entropy-Lagrangean hybrid algorithm for the multi-item capacitated lot-sizing problem with setup times, Computers & OR, 2009, 36(2),530–548. Google Scholar

[41]

Dobslaw, F., A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks, World Academy of Science, Engineering and Technology, 2010, 64,213–216. Google Scholar

[42]

Battiti, R., Brunato, M., Reactive search optimization: learning while optimizing, In: Gendreau, M., Potvin, J.Y., editors. Handbook of Metaheuristics. Springer, 2010, p. 543–571. Google Scholar

[43]

Leung, Y.W., Wang, Y., An orthogonal genetic algorithm with quantization for global numerical optimization, Trans Evol Comp, 2001, 5(1), 41–53. Google Scholar

[44]

Ramsey, C.L., Grefenstette, J.J., Case-based initialization of genetic algorithms, In: Proceedings of the 5th International Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., ISBN 1-55860-299-2, 1993, p. 84–91. Google Scholar

[45]

Louis, S.J., McDonnell, J., Learning with case-injected genetic algorithms, Trans Evol Comp, 2004, 8(4), 316–328.Google Scholar

[46]

Li, Z.q., Zhang, H.l., Zheng, J.h., Dong, M.j., Xie, Y.f., Tian, Z.j., Heuristic evolutionary approach for weighted circles layout, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, p. 324–331. Google Scholar

[47]

Yalcinoz, T., Altun, H., Power economic dispatch using a hybrid genetic algorithm, IEEE Power Engineering Review, 2001, 21(3),59–60. Google Scholar

[48]

De Lima, F.C., De Melo, J.D., Neto, A.D.D., Using the Q-learning algorithm in the constructive phase of the GRASP and reactive GRASP metaheuristics, ISBN 9781424418213, 2008, p. 4169–4176. Google Scholar

[49]

Santos, L.F., Martins, S.L., Plastino, A., Applications of the DM-GRASP heuristic: a survey, International Transactions in Operational Research, 2008, 15(4),387–416. Google Scholar

[50]

Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B., Generalizing surrogate-assisted evolutionary computation, Trans Evol Comp, 2010, 14(3),329–355. Google Scholar

[51]

Tenne, Y., Goh, C.K., Computational intelligence in expensive optimization problems, vol. 2, Springer Science & Business Media, 2010. Google Scholar

[52]

Zhou, Z., Ong, Y.S., Nguyen, M.H., Lim, D., A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm, In: IEEE Congress on Evolutionary Computation, vol. 3. IEEE, 2005, p. 2832–2839. Google Scholar

[53]

Hunger, J., Huttner, G., Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks, J Comput Chem, 1999, 20(4), 455–471. Google Scholar

[54]

Adra, S.F., Hamody, A.I., Griffin, I., Fleming, P.J., A hybrid multi-objective evolutionary algorithm using an inverse neural network for aircraft control system design., In: Congress on Evolutionary Computation. IEEE, 2005, p.1–8. Google Scholar

[55]

Pathak, B.K., Srivastava, S., Srivastava, K., Neural network embedded multiobjective genetic algorithm to solve non-linear time-cost tradeoff problems of project scheduling, Journal of scientific and industrial research, 2008, 67(2),124–131. Google Scholar

[56]

Yang, S., Liu, Q.H., Lu, J., Ho, S.L., Ni, G., Ni, P., et al., Application of support vector machines to accelerate the solution speed of metaheuristic algorithms, IEEE T Magn, 2009, 45(3),1502–1505. Google Scholar

[57]

Brownlee, A.E., Regnier-Coudert, O., McCall, J.A., Massie, S., Using a Markov network as a surrogate fitness function in a genetic algorithm, In: IEEE Congress on Evolutionary Computation. IEEE, 2010, p.1–8. Google Scholar

[58]

Díaz-Manríquez, A., Toscano-Pulido, G., Gómez-Flores, W., On the selection of surrogate models in evolutionary optimization algorithms, In: 2011 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2011, p. 2155–2162. Google Scholar

[59]

Regis, R.G., Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions, IEEE Transactions on Evolutionary Computation, 2014, 18(3),326–347. Google Scholar

[60]

Rasheed, K., Hirsh, H., Informed operators: speeding up genetic-algorithm-based design optimization using reduced models, In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc., 2000, p. 628–635. Google Scholar

[61]

Zhou, A., Zhang, Q., A surrogate-assisted evolutionary algorithm for minimax optimization, In: IEEE Congress on Evolutionary Computation. IEEE, 2010, p.1–7. Google Scholar

[62]

Jin, Y., A comprehensive survey of fitness approximation in evolutionary computation, Soft Comput, 2005, 9(1),3–12. Google Scholar

[63]

Yoo, S.H., Cho, S.B., Partially evaluated genetic algorithm based on fuzzy c-means algorithm, In: International Conference on Parallel Problem Solving from Nature. Springer, 2004, p. 440–449. Google Scholar

[64]

Jin, Y., Sendhoff, B., Reducing fitness evaluations using clustering techniques and neural network ensembles, In: Genetic and evolutionary computation conference. Springer, 2004, p. 688–699. Google Scholar

[65]

Dalboni, F.L., Ochi, L.S., Drummond, L.M.A., On improving evolutionary algorithms by using data mining for the oil collector vehicle routing problem, In: International Network Optimization Conference. 2003, p.182–188. Google Scholar

[66]

Santos, L., Ribeiro, M.H., Plastino, A., Martins, S.L., A hybrid GRASP with data mining for the maximum diversity problem, In: International Workshop on Hybrid Metaheuristics. Springer, 2005, p.116–127.Google Scholar

[67]

Ribeiro, M.H., Plastino, A., Martins, S.L., Hybridization of GRASP metaheuristic with data mining techniques, Journal of Mathematical Modelling and Algorithms, 2006, 5(1),23–41.Google Scholar

[68]

Santos, H.G., Ochi, L.S., Marinho, E.H., Drummond, L.M.d.A., Combining an evolutionary algorithm with data mining to solve a single-vehicle routing problem, Neurocomputing, 2006, 70(1),70–77. Google Scholar

[69]

Louis, S.J., Genetic learning from experience, In: IEEE Congress on Evolutionary Computation, vol.3. IEEE,2003, p. 2118–2125. Google Scholar

[70]

Streichert, F., Stein, G., Ulmer, H., Zell, A., A clustering based niching method for evolutionary algorithms, In: Genetic and Evolutionary Computation Conference. Springer, 2003, p. 644–645. Google Scholar

[71]

Aichholzer, O., Aurenhammer, F., Brandstatter, B., Ebner, T., Krasser, H., Magele, C., et al., Evolution strategy and hierarchical clustering, IEEE T Magn, 2002, 38(2),1041–1044. Google Scholar

[72]

Pulido, G.T., Coello, C.A.C., Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer, In: Genetic and Evolutionary Computation Conference. Springer, 2004, p. 225–237. Google Scholar

[73]

Park, S.Y., Lee, J.J., Improvement of a multi-objective differential evolution using clustering algorithm, In: 2009 IEEE International Symposium on Industrial Electronics. IEEE, 2009, p.1213–1217. Google Scholar

[74]

Handa, H., Baba, M., Horiuchi, T., Katai, O., A novel hybrid framework of coevolutionary GA and machine learning, International Journal of Computational Intelligence and Applications, 2002, 2(01),33–52. Google Scholar

[75]

Michalski, R.S., Learnable evolution model: evolutionary processes guided by machine learning, Mach Learn, 2000, 38(1-2),9–40. Google Scholar

[76]

Jourdan, L., Corne, D., Savic, D., Walters, G., Preliminary investigation of the learnable evolution model for faster/better multiobjective water systems design, In: International Conference on Evolutionary Multi-Criterion Optimization. Springer, 2005, p. 841–855. Google Scholar

[77]

Gaspar-Cunha, A., Vieira, A.S., A hybrid multi-objective evolutionary algorithm using an inverse neural network, 2004, p. 25–30. Google Scholar

[78]

Hu, X.B., Huang, X.Y., Solving TSP with characteristic of clustering by ant colony algorithm, Acta Simulata Systematica Sinica, 2004, 12,014. Google Scholar

[79]

Senjyu, T., Saber, A.Y., Miyagi, T., Shimabukuro, K., Urasaki, N., Funabashi, T., Fast technique for unit commitment by genetic algorithm based on unit clustering, HJEEE Proceedings-Generation, Transmission and Distribution, 2005, 152(5),705–713.Google Scholar

[80]

Barreto, S., Ferreira, C., Paixao, J., Santos, B.S., Using clustering analysis in a capacitated location-routing problem, Eur J Oper Res, 2007, 179(3),968–977.Google Scholar

[81]

Adibi, M.A., Shahrabi, J., A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem, Int J Adv Manuf Tech, 2013, 70(9),1955–1961. Google Scholar

[82]

Lee, C., Gen, M., Tsujimura, Y., Reliability optimization design using a hybridized genetic algorithm with a neural-network technique, IEICE T Fund Electr, 2002, 85(2),432–446. Google Scholar

[83]

Marim, L.R., Lemes, M.R., Dal Pino Jr., A., Neural-network-assisted genetic algorithm applied to silicon clusters, Phys Rev A, 2003, 67(3). Google Scholar

[84]

Auger, A., Hansen, N., Performance evaluation of an advanced local search evolutionary algorithm, In: 2005 IEEE congress on evolutionary computation, vol. 2. IEEE, 2005, p.1777–1784. Google Scholar

[85]

Rice, J.R., The algorithm selection problem, Adv Comput, 1976, 15,65–118. Google Scholar

[86]

Smith-Miles, K.A., Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Computing Surveys, 2009, 41(1),6. Google Scholar

[87]

Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R., Towards objective measures of algorithm performance across instance space, Comput Oper Res, 2014, 45,12–24. Google Scholar

[88]

Smith-Miles, K., Towards insightful algorithm selection for optimisation using meta-learning concepts, In: WCCI 2008: IEEE World Congress on Computational Intelligence. IEEE, 2008, p. 4118–4124. Google Scholar

[89]

Kanda, J.Y., de Carvalho, A.C.P.L.F., Hruschka, E.R., Soares, C., Using meta-learning to recommend meta-heuristics for the traveling salesman problem, In: Machine Learning and Applications and Workshops (ICMLA), 2011 10th International Conference on, vol.1.IEEE, 2011, p. 346–351. Google Scholar

[90]

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R., A classification of hyper-heuristic approaches, In: Handbook of metaheuristics. Springer, 2010, p. 449–468. Google Scholar

[91]

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G.,Özcan, E., et al., Hyper-heuristics: a survey of the state of the art, Eur J Oper Res, 2013, 64(12),1695–1724. Google Scholar

[92]

Thabtah, F., Cowling, P., Mining the data from a hyperheuristic approach using associative classification, Expert Syst Appl, 2008, 34(2),1093–1101. Google Scholar

[93]

Berberoğlu, A., Uyar, A.Ş., A hyper-heuristic approach for the unit commitment problem, In: European Conference on the Applications of Evolutionary Computation. Springer, 2010, p.121–130. Google Scholar

[94]

Li, J., Burke, E.K., Qu, R., Integrating neural networks and logistic regression to underpin hyper-heuristic search, Knowl-based Syst, 2011, 24(2), 322–330. Google Scholar

[95]

Burke, E.K., Petrovic, S., Qu, R., Case-based heuristic selection for timetabling problems, J Sched, 2006, 9(2),115–132. Google Scholar

[96]

Ortiz-Bayliss, J.C., Terashima-Marín, H., Conant-Pablos, S.E., A supervised learning approach to construct hyper-heuristics for constraint satisfaction, In: Mexican Conference on Pattern Recognition. Springer, 2013, p. 284–293. Google Scholar

[97]

Asta, S., Ozcan, E., An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex, In: 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS). 2014, p. 65–72. Google Scholar

[98]

Tyasnurita, R., Ozcan, E., Asta, S., John, R., Improving performance of a hyper-heuristic using a multilayer perceptron for vehicle routing, In: 15th Annual Workshop on Computational Intelligence. Lancaster, UK: Springer, 2015,. Google Scholar

[99]

Asta, S., Ozcan, E., Curtois, T., A tensor based hyper-heuristic for nurse rostering, Knowl-based Syst, 2016, 98, 185–199. Google Scholar

[100]

Cadenas, J.M., Garrido, M.C., Muñoz, E., Using machine learning in a cooperative hybrid parallel strategy of metaheuristics, Inform Sciences, 2009, 179(19),3255–3267. Google Scholar

[101]

Asta, S., Machine learning for improving heuristic optimisation, Ph.D. thesis, The University of Nottingham, UK, 2015. Google Scholar

[102]

Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A.A., Burke, E., A multi-agent based cooperative approach to scheduling and routing, Eur J Oper Res, 2016, 254(1),169–178. Google Scholar

[103]

Pelikan, M., Goldberg, D.E., Lobo, F.G., A survey of optimization by building and using probabilistic models, Comput Optim Appl, 2002, 21(1),5–20. Google Scholar

[104]

Baluja, S., Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning, Tech. Rep., DTIC Document, 1994. Google Scholar

[105]

Harik, G.R., Linkage learning via probabilistic modeling in the ECGA, Tech. Rep. 99010, Illinois Genetic Algorithms Laboratory, 1999. Google Scholar

[106]

Mühlenbein, H., Paass, G., From recombination of genes to the estimation of distributions I. Binary parameters, In: International Conference on Parallel Problem Solving from Nature. Springer, 1996, p.178–187. Google Scholar

[107]

De Bonet, J.S., Isbell, C.L., Viola, P., MIMIC: finding optima by estimating probability densities, In: Advances in neural information processing systems. Morgan Kaufmann publishers, 1997, p. 424–430. Google Scholar

[108]

Pelikan, M., Mühlenbein, H., The bivariate marginal distribution algorithm, In: Advances in Soft Computing. Springer, 1999, p. 521–535. Google Scholar

[109]

Harik, G.R., Lobo, F.G., Goldberg, D.E., The compact genetic algorithm, IEEE T Evolut Comput, 1999, 3(4), 287–297. Google Scholar

[110]

Mühlenbein, H., Mahnig, T., Rodriguez, A.O., Schemata, distributions and graphical models in evolutionary optimization, J Heuristics, 1999, 5(2), 215–247. Google Scholar

[111]

Pelikan, M., Goldberg, D.E., Cantu-Paz, E., Linkage problem, distribution estimation, and Bayesian networks, Evol Comput, 2000, 8(3),311–340. Google Scholar

[112]

Euchi, J., Hybrid estimation of distribution algorithm for a multiple trips fixed fleet vehicle routing problems with time windows, International Journal of Operational Research, 2014, 21(4),433. Google Scholar

[113]

Wang, J., Tang, K., Lozano, J., Yao, X., Estimation of distribution algorithm with stochastic local search for uncertain capacitated arc routing problems, IEEE T Evolut Comput, 2015, 20(c),1–1. Google Scholar

[114]

Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A., A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems, Pattern Recogn, 2012, 1(1),103–117. Google Scholar

[115]

Gumustekin, S., Senel, T., Cengiz, M.A., A comparative study on Bayesian optimization algorithm for nutrition problem, J Food Nutr Res, 2014, 2(12),952–958. Google Scholar

[116]

Escalante, H.J., Ponce-López, V., Escalera, S., Baró, X., Morales-Reyes, A., Martínez-Carranza, J., Evolving weighting schemes for the bag of visual words, Neural Comput App1, 2016, 1–15. Google Scholar

[117]

Stein, G., Chen, B., Wu, A.S., Hua, K.A., Decision tree classifier for network intrusion detection with GA-based feature selection, In: Proceedings of the 43rd annual Southeast regional conference-Volume 2. ACM, 2005, p.136–141. Google Scholar

[118]

Sörensen, K., Janssens, G.K., Data mining with genetic algorithms on binary trees, Eur J Oper Res, 2003, 151(2), 253–264. Google Scholar

[119]

Fernández Caballero, J.C., Martinez, F.J., Hervas, C., Gutierrez, P.A., Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks, IEEE T Neural Network, 2010, 21(5),750–770. Google Scholar

[120]

Huang, C.L., Wang, C.J., A GA-based feature selection and parameters optimization for support vector machines, Expert Syst Appl, 2006, 31,231–240. Google Scholar

[121]

Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H., Comparison of linear, nonlinear, and feature selection methods for EEG signal classification, IEEE T Neur Sys Reh, 2003, 11(2),141–144. Google Scholar

[122]

García-Nieto, J., Alba, E., Jourdan, L., Talbi, E., Sensitivity and specificity based multiobjective approach for feature selection: application to cancer diagnosis, Inform Process Lett, 2009, 109(16),887–896. Google Scholar

[123]

Yusta, S.C., Different metaheuristic strategies to solve the feature selection problem, Pattern Recogn Lett, 2009, 30(5),525–534. Google Scholar

[124]

Aguilera, J.J., Chica, M., del Jesus, M.J., Herrera, F., Niching genetic feature selection algorithms applied to the design of fuzzy rule-based classification systems, In: 2007 IEEE International Fuzzy Systems Conference. IEEE, 2007, p.1–6.Google Scholar

[125]

Xue, B., Cervante, L., Shang, L., Zhang, M., A particle swarm optimisation based multi-objective filter approach to feature selection for classification, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 673–685. Google Scholar

[126]

Candelieri, A., A hyper-solution framework for classification problems via metaheuristic approaches, 4OR, 2011, 9(4), 425–428. Google Scholar

[127]

Yao, X., Evolving artificial neural networks, Proceedings of the IEEE, 1999, 87(9), 1423–1447. Google Scholar

[128]

Stanley, K.O., Miikkulainen, R., Evolving neural networks through augmenting topologies, Evol Comput, 2002, 10(2), 99–127. Google Scholar

[129]

Turner, A.J., Miller, J.F., NeuroEvolution: evolving heterogeneous artificial neural networks, Evolutionary Intelligence, 2014, 7(3),135–154. Google Scholar

[130]

Carvalho, A.R., Ramos, F.M., Chaves, A.A., Metaheuristics for the feedforward artificial neural network (ANN) architecture optimization problem, Neural Comput Appl, 2011, 20(8), 1273–1284. Google Scholar

[131]

Das, S., Abraham, A., Konar, A., Metaheuristic pattern clustering–an overview, In: Metaheuristic clustering. Springer, 2009, p. 1–62. Google Scholar

[132]

Selim, S.Z., Alsultan, K., A simulated annealing algorithm for the clustering problem, Pattern Recogn, 1991, 24(10), 1003–1008. Google Scholar

[133]

Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D., An ant colony approach for clustering, Anal Chim Acta, 2004, 509(2), 187–195. Google Scholar

[134]

De Jong, K.A., Spears, W.M., Gordon, D.F., Using genetic algorithms for concept learning, In: Genetic algorithms for machine learning. Springer, 1993, p. 5–32. Google Scholar

[135]

Chiou, Y.C., Lan, L.W., Genetic clustering algorithms, Eur J Oper Res, 2001,135(2),413–427.Google Scholar

[136]

Garai, G., Chaudhuri, B.B., A novel genetic algorithm for automatic clustering, Pattern Recogn Lett, 2004, 25(2), 173–187. Google Scholar

[137]

Marinakis, Y., Marinaki, M., Matsatsinis, N., A stochastic nature inspired metaheuristic for clustering analysis, International Journal of Business Intelligence and Data Mining, 2008, 3(1),30–44. Google Scholar

[138]

Govindarajan, K., Somasundaram, T.S., Kumar, V.S., Particle swarm optimization (PSO)-based clustering for improving the quality of learning using cloud computing, In: 2013 IEEE 13th International Conference on Advanced Learning Technologies. IEEE, 2013, p. 495–497. Google Scholar

[139]

Banu, P.K.N., Andrews, S., Gene clustering using metaheuristic optimization algorithms, International Journal of Applied Metaheuristic Computing, 2015, 6(4),14–38. Google Scholar

[140]

Ferone, D., Facchiano, A., Marabotti, A., Festa, P., A new GRASP metaheuristic for biclustering of gene expression data, PeerJ Preprints, 2016,. Google Scholar

[141]

Hruschka, E.R., Campello, R.J., Freitas, A., A survey of evolutionary algorithms for clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(2),133–155. Google Scholar

[142]

Kurada, R.R., Pavan, K.K., Rao, A., A preliminary survey on optimized multiobjective metaheuristic methods for data clustering using evolutionary approaches, International Journal of Computer Science & Information Technology, 2013, 5. Google Scholar

[143]

Carvalho, D.R., Freitas, A.A., A genetic algorithm for discovering small disjunct rules in data mining, Appl Soft Comput, 2002, 2(2),75–88. Google Scholar

[144]

Freitas, A., Data mining and knowledge discovery with evolutionary algorithms, Advances in Evolutionary Computation, 2002, 105,819–845. Google Scholar

[145]

Khabzaoui, M., Dhaenens, C., Talbi, E.G., A multicriteria genetic algorithm to analyze DNA microarray data, In: Cec2004: Proceedings of the 2004 Congress on Evolutionary Computation, Vols 1 and 2. 2004, p.1874–1881. Google Scholar

[146]

Khabzaoui, M., Dhaenens, C., Talbi, E.G., Combining evolutionary algorithms and exact approaches for multi-objective knowledge discovery, RAIRO Operations Research, 2008, 42(1),69–83. Google Scholar

[147]

Ishida, C.Y., Pozo, A., Goldbarg, E., Goldbarg, M., Multiobjective optimization and rule learning: subselection algorithm or meta-heuristic algorithm?, In: Innovative applications in data mining. Springer, 2009, p. 47–70. Google Scholar

[148]

Yang, S., Jiang, Y., Nguyen, T.T., Metaheuristics for dynamic combinatorial optimization problems, IMA Journal of Management Mathematics,2013, 24(4),451–480. Google Scholar

[149]

Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B., On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics, J Oper Res Soc, 2011, 62(6), 1085–1097. Google Scholar

[150]

Clarke, G., Wright, J.W., Scheduling of vehicles from a central depot to a number of delivery points, Oper Res, 1964, 12(4),568–581. Google Scholar

## Comments (0)