[1]

Kuchment P., Quantum graphs I: Some basic structures, Waves Random Media, 2004, 14(1), S107–S128 CrossrefGoogle Scholar

[2]

Kronig R. and Penney W., Quantum mechanics of electron in crystal lattices, Proc. R. Soc. Lond., 1931, Ser. A, 130, 499–513 CrossrefGoogle Scholar

[3]

Pauling L., The diamagnetic anisotropy of aromatic molecules, J. Chem. Phys, 1936, 4, 673CrossrefGoogle Scholar

[4]

Platt J., Classification of spectra of cata-condensed hydrocarbons, J. Chem. Phys, 1949, 17, 484 CrossrefGoogle Scholar

[5]

Flesia C., Johnston R. and Kunz H., Strong localization of Classical Waves: A numerical study, Europhys. Lett., 1987,3(4), 497–502 Google Scholar

[6]

Anderson P., New method for scaling theory of localization. II. Multichannel theory of a “wire” and possible extension to higher dimensionality, Phys. Rev. B,1981, 23(10), 4828–4836 CrossrefGoogle Scholar

[7]

Avishai Y., Luck J., Quantum percolation and ballistic conductance on a lattice of wires, Phys. Rev. B, 1992, 46(3), 1074–1095 Google Scholar

[8]

Kowal D., Sivan U., Entin-Wohlman O. and Imry Y., Transmission through multiply-connected wire systems, Phys. Rev. B, 1990, 42(14), 9009–9018 CrossrefGoogle Scholar

[9]

von Below J., Classical solvability of linear parabolic equations in networks, J. Differ. Equations, 1988, 52, 316–337 Google Scholar

[10]

Mehmeti, F. A. and Meister, E., Regular solutions of transmission and interaction problems for wave equations, Math. Meth. Appl. Sci., 1989, 11, 665–685 CrossrefGoogle Scholar

[11]

Ali-Mehmeti F., Nonlinear waves in networks, Academie-Verlag, 1994 Google Scholar

[12]

Pokornyi Yu., Borovskikh A., Differential equations on networks (geometric graphs), Journal of Mathematical Sciences, 2004, 119, 6, 691–718CrossrefGoogle Scholar

[13]

Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., and Shabrov S. A., Differential equations on geometric graphs, Moskva: Fizmatlit, 2004 Google Scholar

[14]

Dáger R. and Zuazua E., Spectral boundary controllability of networks of strings, Comptes Rendus Mathematique, 2002, 334(7), 545–550 CrossrefGoogle Scholar

[15]

Kostrykin V., Potthoff J., and Schrader R., Finite propagation speed for solutions of the wave equation on the metric graphs, J. Funct. Anal., 2012, 263, 1198–1223 CrossrefWeb of ScienceGoogle Scholar

[16]

Banda M. K., Herty M., and Klar A., Gas Flow in Pipeline Networks, Networks and Heter. Media, 2006, 1(1), 41–56 Google Scholar

[17]

Mehmeti F. A. and Régnier V., Splitting of energy of dispersive waves in a star-shaped network, Z. Angew. Math. Mech., 2003, 83(2), 105–118 CrossrefGoogle Scholar

[18]

Mehmeti F. A., Haller-Dintelmannand R., and Régnier V., Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ., 2012, 12, 513–545 Web of ScienceCrossrefGoogle Scholar

[19]

Golovaty Yu., Hrabchak H., Asymptotics of spectrum of Sturm-Liouville operator on networks with perturbed density, Visnyk. Lviv Univ. Ser. Mech-Math., 2007, 67, 66–83 Google Scholar

[20]

Golovaty Yu., Hrabchak H., On Sturm-Liouville problem on starlike graphs with “heavy” nodes, Visnyk Lviv Univ., Ser. Mech-Math., 2010, 72, 63–78 Google Scholar

[21]

Golovaty Yu., Hryniv R., Norm resolvent convergence of singularly scaled Schrödinger operators and *δ*′-potentials, P. Edinburgh Math. Soc. A, 2013, 143, 791–816 CrossrefGoogle Scholar

[22]

Golovaty Yu., 1D Schrödinger operators with short range interactions: two-scale regularization of distributional potentials, Integral Equations and Operator Theory, 2013, 75(3), 341–362 CrossrefGoogle Scholar

[23]

Man’ko S. S., On *δ*′-like potential scattering on star graphs, J. Phys. A: Math. Theor, 2010, 43(44), ID 445304, 14 p Google Scholar

[24]

Man’ko S., Schrödinger operators on star graphs with singularly scaled potentials supported near the vertices, J. Math. Phys., 2012 53(12), 123521, 13 pCrossrefGoogle Scholar

[25]

Exner P., Manko S., Approximations of quantum-graph vertex couplings by singularly scaled potentials, J. Phys. A, Math. Theor., 2013, 46(34), 17 p Web of ScienceGoogle Scholar

[26]

Flyud V., Golovaty Yu., Singular perturbed boundary value problem for hyperbolic equation on geometric graph. Manufacturing Processes. Some Problems, University of Technology, Opole, 2012, 145–166 Google Scholar

[27]

Vishik M. I. and Lyusternik L. A., Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekhi Matematicheskikh Nauk, 1957 12(5), 3–122 Google Scholar

[28]

Vasil’eva, A. B., Butuzov V. F., Asymptotic expansions of solutions of singularly perturbed equations, Nauka, Moscow, 1973Google Scholar

[29]

Trenogin V. A., The development and applications of the asymptotic method of Lyusternik and Vishik, Russian Mathematical Surveys, 1970, 25(4), 119–156 CrossrefGoogle Scholar

[30]

Panasenko, G. P., Asymptotic behavior of the eigenvalues of elliptic equations with strongly varying coefficients, Trudy Sem. Petrovsk, 1987, 12, 201–217 Google Scholar

[31]

Sanchez-Palencia E., Non-homogeneous media and vibration theory, Springer Lect. Notes in Physics 127, 1980Google Scholar

[32]

Gómez D., Lobo M., Nazarov S.A., Pérez E., Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, J. Math. Pures Appl, 2006, 86, 369–402 CrossrefGoogle Scholar

[33]

Evans, L. C., Partial Differential Equations, Providence, RI: AMS, 1998 Google Scholar

[34]

Krżyzański M., Schauder J., Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus. Gemischte Randwertaufgaben, Studia Mathematica, 1936, 6.1, 162–189 CrossrefGoogle Scholar

[35]

Sakamoto R., Mixed problems for hyperbolic equations I Energy inequalities, Journal of Mathematics of Kyoto University, 1970, 10.2, 349–373 CrossrefGoogle Scholar

[36]

Sakamoto R., Mixed problems for hyperbolic equations II, Existence Theorem with Zero Initial Data and Energy Inequalities with Initial Datas, Journal of Mathematics of Kyoto University, 1970, 10.3, 403–417 CrossrefGoogle Scholar

[37]

Ladyzhenskaya O. A., The boundary value problems of Mathematical Physics, New York: Springer-Verlag, 1985Google Scholar

[38]

Volevich S. G., Gindikin L. R., Mixed problem for partial differential equations with quasihomogeneous principal part, American Mathematical Soc., 1996. Google Scholar

[39]

Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Vol. 39. Courier Dover Publications, 1990 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.