[1]

Black F. and Scholes M.S., *The pricing of options and corporate liabilities*. J. Polit. Econ.81(3), 1973, 637–654. ISSN 0022-3808. . CrossrefGoogle Scholar

[2]

Hull J.C. and White A.D., *The pricing of options on assets with stochastic volatilities*. J. Finance 42(2), 1987, 281–300. ISSN 1540-6261. . CrossrefGoogle Scholar

[3]

Scott L.O., *Option pricing when the variance changes randomly: Theory, estimation, and an application*. J. Financ. Quant. Anal. 22(4), 1987, 419–438. ISSN 0022-1090. . CrossrefGoogle Scholar

[4]

Stein J. and Stein E., *Stock price distributions with stochastic volatility: An analytic approach*. Rev. Financ. Stud. 4(4), 1991, 727–752. ISSN 0893-9454. . CrossrefGoogle Scholar

[5]

Heston S.L., *A closed-form solution for options with stochastic volatility with applications to bond and currency options*. Rev. Financ. Stud. 6(2), 1993, 327–343. ISSN 0893-9454. . CrossrefGoogle Scholar

[6]

Higham D.J. and Mao X., *Convergence of monte carlo simulations involving the mean-reverting square root process*. J. Comput. Finance 8(3), 2005, 35–61. ISSN 1460-1559. . CrossrefGoogle Scholar

[7]

Lord R., Koekkoek R., and van Dijk D., *A comparison of biased simulation schemes for stochastic volatility models*. Quant. Finance 10(2), 2010, 177–194. ISSN 1469-7688. . CrossrefWeb of ScienceGoogle Scholar

[8]

Broadie M. and Kaya Ö., *Exact simulation of stochastic volatility and other affine jump diffusion processes*. Oper. Res. 54(2), 2006, 217–231. ISSN 0030-364X. . CrossrefGoogle Scholar

[9]

Andersen L., *Simple and efficient simulation of the Heston stochastic volatility model*. J. Comput. Finance 11(3), 2008, 1–42. ISSN 1460-1559. . CrossrefGoogle Scholar

[10]

Mikhailov S. and Nögel U., *Heston’s stochastic volatility model - implementation, calibration and some extensions*. Wilmott magazine 2003(July), 2003, 74–79. Google Scholar

[11]

Kienitz J. and Wetterau D., Financial modelling: Theory, implementation and practice with MATLAB source. The Wiley Finance Series. Wiley, 2012. ISBN 9781118413319. Google Scholar

[12]

Mrázek M., Heston stochastic volatility model. Master’s thesis, University of West Bohemia in Plzeň, Czech Republic, 2013. Google Scholar

[13]

Mrázek M., Pospíšil J., and Sobotka T., *On optimization techniques for calibration of stochastic volatility models*. In Applied Numerical Mathematics and Scientific Computation, pages 34–40. Europment, Athens, Greece. ISBN 978-1-61804-253-8, 2014. Google Scholar

[14]

Mrázek M., Pospíšil J., and Sobotka T., *On calibration of stochastic and fractional stochastic volatility models*. European J. Oper. Res. 254(3) 2016, 1036-1046. ISSN 0377-2217. . CrossrefWeb of ScienceGoogle Scholar

[15]

Alòs E., de Santiago R., and Vives J., *Calibration of stochastic volatility models via second-order approximation: The Heston case*. Int. J. Theor. Appl. Finance 18(6), 2015, 1–31. ISSN 0219-0249. . CrossrefWeb of ScienceGoogle Scholar

[16]

Rouah F.D., The Heston Model and its Extensions in Matlab and C#, + Website. Wiley Finance Series. John Wiley & Sons, Inc., Hoboken, NJ, 2013. ISBN 9781118548257. Google Scholar

[17]

Cox J.C., Ingersoll J.E., and Ross S.A., *A theory of the term structure of interest rates*. Econometrica 53(2), 1985, 385–407. ISSN 0012-9682. . CrossrefGoogle Scholar

[18]

Feller W., *Two singular diffusion problems*. Ann. Math. 54(1), 1951, 173–182. ISSN 0003-486X. . CrossrefGoogle Scholar

[19]

Albrecher H., Mayer P., Schoutens W., and Tistaert J., *The little Heston trap*. Wilmott Magazine 2007(January/February), 2007, 83–92. Google Scholar

[20]

Gatheral J., The volatility surface: A practitioner’s guide. Wiley Finance. John Wiley & Sons, Hoboken, New Jersey, 2006. ISBN 9780470068250. Google Scholar

[21]

Kahl C. and Jäckel P., *Not-so-complex logarithms in the Heston model*. Wilmott Magazine 2005(September), 2005, 94–103. Google Scholar

[22]

Lewis A.L., Option valuation under stochastic volatility, with Mathematica code. Finance Press, Newport Beach, CA, 2000. ISBN 9780967637204. Google Scholar

[23]

Baustian F, Mrázek M., Pospíšil J., and Sobotka T., *Unifying pricing formula for several stochastic volatility models with jumps*. Appl. Stoch. Models Bus. Ind. ISSN 1524-1904. . To appear (online first 04/2017). CrossrefWeb of ScienceGoogle Scholar

[24]

Attari M., *Option pricing using Fourier transforms: A numerically efficient simplification*, 2004. . Available at SSRN: http://ssrn.com/abstract=520042. Crossref

[25]

Daněk J. and Pospíšil J., *Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models*, 2017. Manuscript under review (submitted 01/2017). Google Scholar

[26]

Ribeiro A. and Poulsen R., *Approximation behoves calibration*. Quant. Finance Letters 1(1), 2013, 36–40. ISSN 2164-9502. . CrossrefGoogle Scholar

[27]

Forde M. and Jacquier A., *The large-maturity smile for the Heston model*. Finance Stoch. 15(4), 2011, 755–780. ISSN 0949-2984. . CrossrefWeb of ScienceGoogle Scholar

[28]

Forde M., Jacquier A., and Lee R., *The small-time smile and term structure of implied volatility under the Heston model*. SIAM J. Finan. Math. 3(1), 2012, 690–708. ISSN 1945-497X. . CrossrefGoogle Scholar

[29]

Carr P. and Madan D.B., *Option valuation using the fast Fourier transform*. J. Comput. Finance 2(4), 1999, 61–73. ISSN 1460-1559. . CrossrefGoogle Scholar

[30]

Bailey D.H. and Swarztrauber P.N., *The fractional Fourier transform and applications*. SIAM Rev. 33(3), 1991, 389–404. ISSN 0036-1445. . CrossrefGoogle Scholar

[31]

Bailey D.H. and Swarztrauber P.N., *A fast method for the numerical evaluation of continuous Fourier and Laplace transforms*. SIAM J. Sci. Comput. 15(5), 1994, 1105–1110. ISSN 1064-8275. . CrossrefGoogle Scholar

[32]

Fang F. and Oosterlee C.W., *A novel pricing method for European options based on Fourier-cosine series expansions*. SIAM J. Sci. Comput. 31(2), 2009, 826–848. ISSN 1064-8275. . CrossrefWeb of ScienceGoogle Scholar

[33]

Ortiz-Gracia L. and Oosterlee C.W., *A highly efficient Shannon wavelet inverse Fourier technique for pricing European options*. SIAM J. Sci. Comput. 38(1), 2016, B118–B143. ISSN 1064-8275. . CrossrefGoogle Scholar

[34]

Zhylyevskyy O., *A fast fourier transform technique for pricing american options under stochastic volatility*. Rev. Deriv. Res. 13(1), 2010, 1–24. ISSN 1380-6645. . CrossrefWeb of ScienceGoogle Scholar

[35]

Zhylyevskyy O., *Efficient pricing of European-style options under Heston’s stochastic volatility model*. Theor. Econ. Letters 2(1), 2012, 16–20. ISSN 2162-2078. . CrossrefGoogle Scholar

[36]

Jacquier E. and Jarrow R., *Bayesian analysis of contingent claim model error*. J. Econometrics 94(1–2), 2000, 145–180. ISSN 0304-4076. . CrossrefGoogle Scholar

[37]

Bakshi G., Cao C., and Chen Z., *Empirical performance of alternative option pricing models*. J. Finance 52(5), 1997, 2003–2049. ISSN 1540-6261. . CrossrefGoogle Scholar

[38]

Hamida S.B. and Cont R., *Recovering volatility from option prices by evolutionary optimization*. J. Comput. Finance 8(4), 2005, 43–76. ISSN 1460-1559. . CrossrefGoogle Scholar

[39]

Deelstra G. and Delbaen F., *Convergence of discretized stochastic (interest rate) processes with stochastic drift term*. Appl. Stoch. Models Data Anal. 14(1), 1998, 77–84. ISSN 1099-0747. . CrossrefGoogle Scholar

[40]

van Haastrecht A. and Pelsser A., *Efficient, almost exact simulation of the Heston stochastic volatility model*. Int. J. Theor. Appl. Finance 13(01), 2010, 1–43. ISSN 0219-0249. . CrossrefGoogle Scholar

[41]

Andersen L.B. and Brotherton-Ratcliffe R., *Extended LIBOR market models with stochastic volatility*. J. Comput. Finance 9(1), 2005, 1–40. ISSN 1460-1559. . CrossrefGoogle Scholar

[42]

Kahl C. and Jäckel P., *Fast strong approximation monte carlo schemes for stochastic volatility models*. Quant. Finance 6(6), 2006, 513–536. ISSN 1469-7688. . CrossrefGoogle Scholar

[43]

Alfonsi A., *High order discretization schemes for the CIR process: Application to affine term structure and Heston models*. Math. Comp. 79(269), 2010, 209–237. ISSN 0025-5718. . CrossrefGoogle Scholar

[44]

Chan J.H. and Joshi M., *Fast and accurate long stepping simulation of the Heston stochastic volatility model*, 2010. . Available at SSRN: https://ssrn.com/abstract=1617187. Crossref

[45]

Elices A., *Models with time-dependent parameters using transform methods: application to Heston’s model*, 2008. Available at arXiv: https://arxiv.org/abs/0708.2020.

[46]

Benhamou E., Gobet E., and Miri M., *Time dependent Heston model*. SIAM J. Finan. Math. 1(1), 2010, 289–325. ISSN 1945-497X. . CrossrefGoogle Scholar

[47]

Bayer C., Friz P., and Gatheral J., *Pricing under rough volatility*. Quant. Finance 16(6), 2016, 887–904. ISSN 1469-7688. . CrossrefWeb of ScienceGoogle Scholar

[48]

Duffie D., Pan J., and Singleton K., *Transform analysis and asset pricing for affine jump-diffusions*. Econometrica 68(6), 2000, 1343–1376. ISSN 0012-9682. . CrossrefGoogle Scholar

[49]

Pospíšil J. and Sobotka T., *Market calibration under a long memory stochastic volatility model*. Appl. Math. Finance 23(5), 2016, 323–343. ISSN 1350-486X. . CrossrefGoogle Scholar

[50]

Pospíšil J., Sobotka T., and Ziegler P., *Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure*, 2016. Manuscript under review (submitted 06/2016). Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.