[1]

Goldberger A.S., Best linear unbiased prediction in the generalized linear regression model, *Journal of the American Statistical Association*, 1962, 57(298), 369–375 CrossrefGoogle Scholar

[2]

Bolfarine H., Zacks S., Bayes and minimax prediction in finite populations, *J. Statist. Plann. Infer*., 1991, 28, 139–151 CrossrefGoogle Scholar

[3]

Yu S. H., The linear minimax predictor in finite populations with arbitrary rank under quadratic loss function, *Chin. Ann. Math*., 2004, 25, 485–496 Google Scholar

[4]

Xu L. W., Wang S. G., The minimax predictor in finite populations with arbitrary rank in normal distribution, *Chin. Ann. Math*., 2006, 27, 405–416 Google Scholar

[5]

Gotway C. A., Cressie N., Improved multivariate prediction under a general linear model, *J. Multivariate Anal*., 1993, 45, 56–72 CrossrefGoogle Scholar

[6]

P J G Teunissen P. J. G., Best prediction in linear models with mixed integer/real unknowns: theory and application, *Journal of Geodesy*, 2007, 81(12), 759–780 Web of ScienceCrossrefGoogle Scholar

[7]

Xu L. W., Admissible linear predictors in the superpopulation model with respect to inequality constraints, *Comm. Statist. Theory Methods*, 2009, 38, 2528–2540 CrossrefGoogle Scholar

[8]

Searle S. R., Casella G., McCulloch C. E., Variance components, 1992, New York: Wiley. Google Scholar

[9]

Bolfarine H., Rodrigues J., On the simple projection predictor in finite populations, *Australian Journal of Statistics*, 1988, 30(3), 338–341 CrossrefGoogle Scholar

[10]

Hu G. K., Li Q. G., Yu S. H., Optimal and minimax prediction in multivariate normal populations under a balanced loss function, *J. Multivariate Anal*., 2014, 128, 154–164 CrossrefWeb of ScienceGoogle Scholar

[11]

Hu G. K., Peng P., Linear admissible predictor of finite population regression coefficient under a balanced loss function, *J. Math*., 2014, 34, 820–828 Google Scholar

[12]

Diebold F. X., Lopez J. A., Forecast evaluation and combination, *Handbook of statistics*, 1996, 14, 241–268 CrossrefGoogle Scholar

[13]

Hendry D. F., Clements M. P., Pooling of forecasts, *Econometrics Journal*, 2002, 5, 1–26 Google Scholar

[14]

Timmermann A., Forecast combinations, *Handbook of economic forecasting*, 2006, 1, 135–196 CrossrefWeb of ScienceGoogle Scholar

[15]

Shalabh, Performance of stein-rule procedure for simultaneous prediction of actual and average values of study variable in linear regression models, *Bull. Internat. Statist. Inst*, 1995, 56, 1357–1390 Google Scholar

[16]

Chaturvedi A., Singh S. P., Stein rule prediction of the composite target function in a general linear regression model, *Statist. Papers*, 2000, 41(3), 359–367 CrossrefGoogle Scholar

[17]

Chaturvedi A., Kesarwani S., Chandra R., Simultaneous prediction based on shrinkage estimator, *in: Shalabh*, *C. Heumann (Eds.)*, *Recent Advances in Linear Models and Related Areas*, *Springer*, 2008, 181–204 Google Scholar

[18]

Shalabh, Heumann C., Simultaneous prediction of actual and average values of study variable using stein-rule estimators, *in: K. Kumar*, *A. Chaturvedi (Eds.)*, *Some Recent Developments in Statistical Theory and Application*, *Brown Walker Press*, *USA*, 2012, 68–81 Google Scholar

[19]

Chaturvedi A., Wan A. T. K., Singh S. P., Improved multivariate prediction in a general linear model with an unknown error covariance matrix, *J. Multivariate Anal*., 2002, 83(1), 166–182 CrossrefGoogle Scholar

[20]

Bai C., Li H., Admissibility of simultaneous prediction for actual and average values in finite population, *J. Inequal. Appl*., 2018, 2018(1), 117 Web of ScienceCrossrefGoogle Scholar

[21]

Toutenburg H., Shalabh, Predictive performance of the methods of restricted and mixed regression estimators, *Biometrical J*., 1996, 38(8), 951–959 CrossrefGoogle Scholar

[22]

Toutenburg H., Shalabh, Improved predictions in linear regression models with stochastic linear constraints, *Biom. J*., 2000, 42(1), 71–86 CrossrefGoogle Scholar

[23]

Dubeand M., Manocha V., Simultaneous prediction in restricted regression models, *J. Appl. Statist. Sci*., 2002, 11(4), 277–288 Google Scholar

[24]

Shalabh, Paudel C. M., Kumar N., Simultaneous prediction of actual and average values of response variable in replicated measurement error models, *in: Shalabh*, *C. Heumann (Eds.)*, *Recent Advances in Linear Models and Related Areas*, *Springer*, 2008, 105–133 Google Scholar

[25]

Garg G., Shalabh, Simultaneous predictions under exact restrictions in ultrastructural model, *Journal of Statistical Research (in Special Volume on Measurement Error Models)*, 2011, 45(2), 139–154 Google Scholar

[26]

Shalabh, A revisit to efficient forecasting in linear regression models, *J. Multivariate Anal*., 2013, 114, 161–170 CrossrefWeb of ScienceGoogle Scholar

[27]

Wang S. G., Shi J. H., Introduction to the linear model, 2004, Science Press, Beijing. Google Scholar

[28]

Yu S. H., Xu L. W., Admissibility of linear prediction under quadratic loss, *Acta Mathematicae Applicatae Sinica*, 2004, 27, 385–396 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.