Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal !

Mathematical Morphology - Theory and Applications

Editor-in-Chief: Chanussot, Jocelyn

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-3390
See all formats and pricing
More options …

Local 2D Pattern Spectra as Connected Region Descriptors

Petra Bosilj / Michael H. F. Wilkinson
  • Corresponding author
  • Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa Kijak / Sébastien Lefèvre
Published Online: 2016-05-16 | DOI: https://doi.org/10.1515/mathm-2016-0011

Abstract

We validate the usage of augmented 2D shape-size pattern spectra, calculated on arbitrary connected regions. The evaluation is performed on MSER regions and competitive performance with SIFT descriptors achieved in a simple retrieval system, by combining the local pattern spectra with normalized central moments. An additional advantage of the proposed descriptors is their size: being half the size of SIFT, they can handle larger databases in a time-efficient manner. We focus in this paper on presenting the challenges faced when transitioning from global pattern spectra to the local ones. An exhaustive study on the parameters and the properties of the newly constructed descriptor is offered, as well as performance results from preliminary experiments, validating the usage of the descriptor. We also consider possible improvements to the quality and computation efficiency of the proposed local descriptors.

Keywords: shape-size pattern spectra; granulometries; max-tree; region descriptors; CBIR

References

  • [1] R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2911–2918. IEEE, 2012. Google Scholar

  • [2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). Computer vision and image understanding, 110(3):346–359, 2008. Google Scholar

  • [3] J. A. Benediktsson, M. Pesaresi, and K. Arnason. Classification and Feature Extraction for Remote Sensing Images from Urban Areas based on Morphological Transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9):1940–1949, 2003. Google Scholar

  • [4] P. Bosilj, E. Kijak, M. H. F. Wilkinson, and S. Lefèvre. Short local descriptors from 2D connected pattern spectra. To appear in ICIP 2015. Google Scholar

  • [5] Petra Bosilj, Michael HFWilkinson, Ewa Kijak, and Sébastien Lefèvre. Local 2d pattern spectra as connected region descriptors. In Mathematical Morphology and Its Applications to Signal and Image Processing, pages 182–193. Springer, 2015. Google Scholar

  • [6] E. J. Breen and R. Jones. Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding, 64(3):377–389, 1996. Google Scholar

  • [7] K. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Transactions on Geoscience and Remote Sensing, 48(10):3747–3762, 2010. Google Scholar

  • [8] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive Hashing Scheme Based on P-stable Distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG ’04, pages 253–262, 2004. Google Scholar

  • [9] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977. Google Scholar

  • [10] M.-K. Hu. Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on, 8(2):179–187, 1962. Google Scholar

  • [11] R. Jones. Component trees for image filtering and segmentation. In IEEE Workshop on Nonlinear Signal and Image Processing, E. Coyle, Ed., Mackinac Island, 1997. Google Scholar

  • [12] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image descriptors. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II– 506. IEEE, 2004. Google Scholar

  • [13] H. Lejsek, B. Þ. Jónsson, and L. Amsaleg. NV-Tree: Nearest Neighbors at the Billion Scale. In Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR ’11, pages 54:1–54:8, 2011. Google Scholar

  • [14] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91– 110, 2004. Google Scholar

  • [15] P. Maragos. Pattern spectrum and multiscale shape representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7):701–716, 1989. Google Scholar

  • [16] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing, 22(10):761–767, 2004. Google Scholar

  • [17] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615–1630, 2005. Google Scholar

  • [18] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine region detectors. International journal of computer vision, 65(1-2):43–72, 2005. Google Scholar

  • [19] M. Muja and D. G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. In International Conference on Computer Vision Theory and Application VISSAPP’09), pages 331–340. INSTICC Press, 2009. Google Scholar

  • [20] E. Mwebaze, P. Schneider, F.-M. Schleif, J. R. Aduwo, J. A. Quinn, S. Haase, T. Villmann, and M. Biehl. Divergence-based classification in learning vector quantization. Neurocomputing, 74(9):1429–1435, 2011. Google Scholar

  • [21] D. Nistér and H. Stewénius. Linear timemaximally stable extremal regions. In Computer Vision–ECCV 2008, pages 183–196. Springer, 2008. Google Scholar

  • [22] G. K. Ouzounis, M. Pesaresi, and P. Soille. Differential Area Profiles: Decomposition Properties and Efficient Computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(8):1533–1548, 2012. Google Scholar

  • [23] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive connected operators for image and sequence processing. Image Processing, IEEE Transactions on, 7(4):555–570, 1998. Google Scholar

  • [24] G. Schaefer and M. Stich. UCID: An Uncompressed Colour Image Database. In Electronic Imaging 2004, pages 472–480. International Society for Optics and Photonics, 2003. Google Scholar

  • [25] C. Schmid and R. Mohr. Object recognition using local characterization and semi-local constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):530–534, 1997. Google Scholar

  • [26] J. Sivic and A. Zisserman. Video Google: Efficient visual search of videos. In J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, editors, Toward Category-Level Object Recognition, volume 4170 of LNCS, pages 127–144. Springer, 2006. Google Scholar

  • [27] F. Tushabe and M. H. F. Wilkinson. Content-based image retrieval using combined 2D attribute pattern spectra. In Advances in Multilingual and Multimodal Information Retrieval, pages 554–561. Springer, 2008. Google Scholar

  • [28] E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson. Connected shape-size pattern spectra for rotation and scaleinvariant classification of gray-scale images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(2):272– 285, 2007. Google Scholar

  • [29] E. R. Urbach and M. H. F. Wilkinson. Shape-only granulometries and grey-scale shape filters. In Proc. Int. Symp. Math. Morphology (ISMM), volume 2002, pages 305–314, 2002. Google Scholar

  • [30] A. Vedaldi and B Fulkerson. VLFeat: An Open and Portable Library of Computer Vision Algorithms. http://www.vlfeat.org/, 2008. Google Scholar

  • [31] M. A. Westenberg, J. B. T. M. Roerdink, and M. H. F. Wilkinson. Volumetric Attribute Filtering and Interactive Visualization using the Max-Tree Representation. IEEE Trans. Image Proc., 16:2943–2952, 2007. Google Scholar

  • [32] M. H. F. Wilkinson. Generalized pattern spectra sensitive to spatial information. In Pattern Recognition, International Conference on, volume 1, pages 10021–10021. IEEE Computer Society, 2002. Google Scholar

  • [33] Y. Xu, T. Géraud, and L. Najman. Morphological filtering in shape spaces: Applications using tree-based image representations. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 485–488. IEEE, 2012. Google Scholar

About the article

Received: 2015-07-20

Accepted: 2016-02-11

Published Online: 2016-05-16


Citation Information: Mathematical Morphology - Theory and Applications, Volume 1, Issue 1, ISSN (Online) 2353-3390, DOI: https://doi.org/10.1515/mathm-2016-0011.

Export Citation

© 2016 Petra Bosilj et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Petra Bosilj, Erchan Aptoula, Sébastien Lefèvre, and Ewa Kijak
ISPRS International Journal of Geo-Information, 2016, Volume 5, Number 12, Page 228

Comments (0)

Please log in or register to comment.
Log in