Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board Member: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

4 Issues per year


CiteScore 2016: 0.70

SCImago Journal Rank (SJR) 2016: 0.647
Source Normalized Impact per Paper (SNIP) 2016: 0.908

Mathematical Citation Quotient (MCQ) 2016: 0.33

Online
ISSN
1569-3961
See all formats and pricing
More options …
Volume 11, Issue 4 (Dec 2005)

Issues

Functional quantization for numerics with an application to option pricing

Gilles Pagès
  • Laboratoire de Probabilités et Modèles aléatoires, CNRS UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5. & Projet MATHFI, INRIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacques Printems
  • Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris 12, 61, avenue du Général de Gaulle, F-94010 Créteil. & Projet MATHFI, INRIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar

We investigate in this paper the numerical performances of quadratic functional quantization with some applications to Finance. We emphasize the rôle played by the so-called product quantizers and the Karhunen-Loève expansion of Gaussian processes, in particular the Brownian motion. We show how to build some efficient functional quantizers for Brownian diffusions. We propose a quadrature formula based on a Romberg log-extrapolation of "crude" functional quantization which speeds up significantly the method. Numerical experiments are carried out on two European option pricing problems: vanilla and Asian Call options in a Heston stochastic volatility model. It suggests that functional quantization is a very efficient integration method for various path-dependent functionals of a diffusion processes: it produces deterministic results which outperforms Monte Carlo simulation for usual accuracy levels.

Key Words: Functional quantization,; Product quantizers,; Romberg extrapolation,; Karhunen-Loève expansion,; Brownian motion,; SDE,; Asian option,; stochastic volatility,; Heston model.

About the article

Published Online:

Published in Print: 2005-12-01


Citation Information: Monte Carlo Methods and Applications mcma, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/156939605777438578.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
G. BORMETTI, G. CALLEGARO, G. LIVIERI, and A. PALLAVICINI
European Journal of Applied Mathematics, 2017, Page 1
[2]
Marc Kesseböhmer and Sanguo Zhu
Mathematische Nachrichten, 2017, Volume 290, Number 5-6, Page 827
[3]
Giorgia Callegaro, Lucio Fiorin, and Martino Grasselli
Quantitative Finance, 2017, Volume 17, Number 6, Page 855
[4]
Georg Ch. Pflug and Alois Pichler
SIAM Journal on Optimization, 2016, Volume 26, Number 3, Page 1715
[5]
Emilio Russo and Alessandro Staino
The Journal of Derivatives, 2016, Volume 23, Number 4, Page 7
[6]
Gilles Pagès and Abass Sagna
Applied Mathematical Finance, 2015, Volume 22, Number 5, Page 463
[7]
Vasileios Christou, Paolo Bocchini, and Manuel J. Miranda
Probabilistic Engineering Mechanics, 2016, Volume 44, Page 53
[8]
Harald Luschgy and Gilles Pagès
Journal of Approximation Theory, 2015, Volume 198, Page 111
[9]
Jong Ho Hwang
Journal of Financial Regulation and Compliance, 2015, Volume 23, Number 2, Page 179
[10]
Christophe Profeta and Abass Sagna
Stochastics An International Journal of Probability and Stochastic Processes, 2015, Volume 87, Number 1, Page 112
[11]
Jean-Claude Fort and Luis A. Salomón
Journal of Statistical Computation and Simulation, 2015, Volume 85, Number 9, Page 1807
[12]
Sylvain Corlay, Joachim Lebovits, and Jacques Lévy Véhel
Mathematical Finance, 2014, Volume 24, Number 2, Page 364
[13]
Frank Aurzada, Steffen Dereich, Michael Scheutzow, and Christian Vormoor
Journal of Complexity, 2009, Volume 25, Number 2, Page 163
[14]
S. Boyaval, C. Le Bris, T. Lelièvre, Y. Maday, N. C. Nguyen, and A. T. Patera
Archives of Computational Methods in Engineering, 2010, Volume 17, Number 4, Page 435
[15]
Pierre Del Moral, Peng Hu, Nadia Oudjane, and Bruno Rémillard
SIAM Journal on Financial Mathematics, 2011, Volume 2, Number 1, Page 587
[16]
Abass Sagna
Monte Carlo Methods and Applications, 2011, Volume 17, Number 4
[17]
Bruno Gas
IEEE Transactions on Neural Networks, 2010, Volume 21, Number 11, Page 1766
[18]
Stefan Junglen and Harald Luschgy
Journal of Applied Mathematics, 2010, Volume 2010, Page 1
[19]
Siegfried Graf, Harald Luschgy, and Gilles Pagès
ESAIM: Probability and Statistics, 2008, Volume 12, Page 127
[20]
Sylvain Maire and Etienne Tanré
Monte Carlo Methods and Applications, 2008, Volume 14, Number 1
[21]
Harald Luschgy, Gilles Pagès, and Benedikt Wilbertz
ESAIM: Probability and Statistics, 2010, Volume 14, Page 93
[22]
Jakob Creutzig, Steffen Dereich, Thomas Müller-Gronbach, and Klaus Ritter
Foundations of Computational Mathematics, 2009, Volume 9, Number 4, Page 391
[23]
Frank Aurzada and Steffen Dereich
Foundations of Computational Mathematics, 2009, Volume 9, Number 3, Page 359

Comments (0)

Please log in or register to comment.
Log in