Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.319
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Mathematical Citation Quotient (MCQ) 2018: 0.18

See all formats and pricing
More options …
Volume 20, Issue 1


Implementation and analysis of an adaptive multilevel Monte Carlo algorithm

Håkon Hoel / Erik von Schwerin / Anders Szepessy / Raúl Tempone
Published Online: 2013-11-13 | DOI: https://doi.org/10.1515/mcma-2013-0014


We present an adaptive multilevel Monte Carlo (MLMC) method for weak approximations of solutions to Itô stochastic differential equations (SDE). The work [Oper. Res. 56 (2008), 607–617] proposed and analyzed an MLMC method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a single level Euler–Maruyama Monte Carlo method from 𝒪( TOL -3) to 𝒪( TOL -2log( TOL -1)2) for a mean square error of 𝒪( TOL 2). Later, the work [Lect. Notes Comput. Sci. Eng. 82, Springer-Verlag, Berlin (2012), 217–234] presented an MLMC method using a hierarchy of adaptively refined, non-uniform time discretizations, and, as such, it may be considered a generalization of the uniform time discretization MLMC method. This work improves the adaptive MLMC algorithms presented in [Lect. Notes Comput. Sci. Eng. 82, Springer-Verlag, Berlin (2012), 217–234] and it also provides mathematical analysis of the improved algorithms. In particular, we show that under some assumptions our adaptive MLMC algorithms are asymptotically accurate and essentially have the correct complexity but with improved control of the complexity constant factor in the asymptotic analysis. Numerical tests include one case with singular drift and one with stopped diffusion, where the complexity of a uniform single level method is 𝒪( TOL -4). For both these cases the results confirm the theory, exhibiting savings in the computational cost for achieving the accuracy 𝒪( TOL ) from 𝒪( TOL -3) for the adaptive single level algorithm to essentially 𝒪( TOL -2log( TOL -1)2) for the adaptive MLMC algorithm.

Keywords: Computational finance; Monte Carlo; multilevel; adaptivity; weak approximation; error control; Euler–Maruyama method; a posteriori error estimates; backward dual functions; adjoints

MSC: 65C30; 65Y20; 65L50; 65H35; 60H35; 60H10

About the article

Received: 2012-11-12

Accepted: 2013-09-12

Published Online: 2013-11-13

Published in Print: 2014-03-01

Funding Source: Royal Institute of Technology in Stockholm

Award identifier / Grant number: Dahlquist fellowship

Funding Source: Department of Scientific Computing in Florida State University

Funding Source: University of Austin Subcontract

Award identifier / Grant number: 024550

Funding Source: VR project

Award identifier / Grant number: “Effektiva numeriska metoder för stokastiska differentialekvationer med tillämpningar”

Funding Source: Center for Industrial and Applied Mathematics (CIAM) at the Royal Institute of Technology

Funding Source: King Abdullah University of Science and Technology (KAUST)

Citation Information: Monte Carlo Methods and Applications, Volume 20, Issue 1, Pages 1–41, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/mcma-2013-0014.

Export Citation

© 2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

H. Hoel, K. H. Karlsen, N. H. Risebro, and E. B. Storrøsten
Stochastics and Partial Differential Equations: Analysis and Computations, 2019
Michael B. Giles
Acta Numerica, 2015, Volume 24, Page 259
Laura Scarabosio, Barbara Wohlmuth, J. Tinsley Oden, and Danial Faghihi
Computers & Mathematics with Applications, 2019, Volume 78, Number 8, Page 2700
Håkon Hoel and Sebastian Krumscheid
Journal of Complexity, 2019, Volume 54, Page 101407
Thomas Müller-Gronbach and Larisa Yaroslavtseva
Journal of Mathematical Analysis and Applications, 2018
Cónall Kelly and Gabriel J Lord
IMA Journal of Numerical Analysis, 2018, Volume 38, Number 3, Page 1523
Ralf Kornhuber and Evgenia Youett
SIAM Journal on Numerical Analysis, 2018, Volume 56, Number 4, Page 1987
J. Tinsley Oden
Acta Numerica, 2018, Volume 27, Page 353
Grigoris Katsiolides, Eike H. Müller, Robert Scheichl, Tony Shardlow, Michael B. Giles, and David J. Thomson
Journal of Computational Physics, 2018, Volume 354, Page 320
Larisa Yaroslavtseva
Journal of Complexity, 2017, Volume 42, Page 1
Larisa Yaroslavtseva and Thomas Müller-Gronbach
Stochastic Analysis and Applications, 2017, Volume 35, Number 3, Page 423
Håkon Hoel, Kody J. H. Law, and Raul Tempone
SIAM Journal on Numerical Analysis, 2016, Volume 54, Number 3, Page 1813
Abdul-Lateef Haji-Ali, Fabio Nobile, and Raúl Tempone
Numerische Mathematik, 2016, Volume 132, Number 4, Page 767
Abdul-Lateef Haji-Ali, Fabio Nobile, Erik von Schwerin, and Raúl Tempone
Stochastics and Partial Differential Equations Analysis and Computations, 2016, Volume 4, Number 1, Page 76
O.P. Le Maître and O.M. Knio
Reliability Engineering & System Safety, 2015, Volume 135, Page 107

Comments (0)

Please log in or register to comment.
Log in