Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

4 Issues per year


CiteScore 2017: 0.67

SCImago Journal Rank (SJR) 2017: 0.417
Source Normalized Impact per Paper (SNIP) 2017: 0.860

Mathematical Citation Quotient (MCQ) 2016: 0.33

Online
ISSN
1569-3961
See all formats and pricing
More options …
Volume 22, Issue 4

Issues

The planar Couette flow with slip and jump boundary conditions in a microchannel

Mohamed Hssikou / Jamal Baliti / Mohammed Alaoui
Published Online: 2016-11-17 | DOI: https://doi.org/10.1515/mcma-2016-0117

Abstract

The steady state of a dilute gas enclosed within a rectangular cavity, whose upper and lower sides are in relative motion, is considered in the slip and early transition regimes. The DSMC (Direct simulation Monte Carlo) method is used to solve the Boltzmann equation for analysing a Newtonian viscous heat conducting ideal gas with the slip and jump boundary conditions (SJBC) in the vicinity of horizontal walls. The numerical results are compared with the Navier–Stokes solutions, with and without SJBC, through the velocity, temperature, and normal heat flux profiles. The parallel heat flux and shear stress are also evaluated as a function of rarefaction degree; estimated by the Knudsen number Kn. Thus, the breakdown of the classical Navier–Stokes theory is clarified in the non-equilibrium area, so-called Knudsen layer, near the top and bottom sides.

Keywords: DSMC; microchannel; Couette flow; slip and jump; rarefied gas; Navier–Stokes

MSC 2010: 70-08; 76P05; 76D05; 76K05

References

  • [1]

    Amiri-Jaghargh A., Roohi E., Stefanov S., Nami H. and Niazmand H., DSMC simulation of micro/nano flows using SBT-TAS technique, Comput. & Fluids 102 (2014), 266–276. Google Scholar

  • [2]

    Bird G. A., Molecular Gas Dynamics, Oxford University Press, Oxford, 1976. Google Scholar

  • [3]

    Bird G. A., Monte Carlo simulation of gas flows, Annu. Rev. Fluid Mech. 10 (1978), 11–31. Google Scholar

  • [4]

    Bird G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford, 1994. Google Scholar

  • [5]

    Chang C. W., Uhlenbeck G. E. and De Boer j., The heat conductivity and viscosity of polyatomic gases, Stud. Stat. Mech. 2 (1964), 243–268. Google Scholar

  • [6]

    Colin S., Rarefaction and compressibility effects on steady and transient gas flows in microchannels, Microfluid. Nanofluid. 1 (2005), no. 3, 268–279. Google Scholar

  • [7]

    Colin S., Gas microflows in the slip flow regime: A critical review on convective heat transfer, ASME J. Heat Transfer 134 (2012), no. 2, Article ID 020908. Google Scholar

  • [8]

    Chung C. H., Numerical simulation of low-speed gas flows in a microfluidic system, J. Thermophys. Heat Transfer 19 (2005), no. 3, 336–342. Google Scholar

  • [9]

    Gravesen P., Branebjerg J. and Jensen O. S., Microfluidics—A review, J. Micromech. Microeng. 3 (1993), no. 4, 168–182. Google Scholar

  • [10]

    Guckel H., Christenson T. R., Skrobis K. J., Jung T. S., Klein J., Hartojo K. V. and Widjaja I., A first functional current excited planar rotational magnetic micromotor, Micro Electro Mechanical Systems – MEMS’93, IEEE Press, Piscataway (1993), 7–11. Google Scholar

  • [11]

    Ho C. M. and Tai Y. C., Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30 (1998), no. 1, 579–612. Google Scholar

  • [12]

    Hooman K., Hooman F. and Famouri M., Scaling effects for flow in micro-channels: Variable property, viscous heating, velocity slip, and temperature jump, Int. Commun. Heat Mass Transfer 36 (2009), no. 2, 192–196. Google Scholar

  • [13]

    Hssikou M., Baliti J., Bouzineb Y. and Alaoui M., DSMC method for a two-dimensional flow with a gravity field in a square cavity, Monte Carlo Methods Appl. 21 (2015), no. 1, 59–67. Google Scholar

  • [14]

    Ivanov M. S., Kashkovsky A. V., Gimelshein S. F., Markelov G. N., Alexeenko A. A., Bondar Y. A., Zhukova G. A., Nikiforov S. B. and Vaschenkov P. V., SMILE system for 2D/3D DSMC computations, Proceedings of 25th International Symposium on Rarefied Gas Dynamics (St. Petersburg 2006), Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2007), 539–544. Google Scholar

  • [15]

    Janson S. W., Helvajian H. and Breuer K., MEMS, microengineering and aerospace systems, 30th Fluid Dynamics Conference, AIAA, Reston (1999), 10.2514/6.1999-3802. Google Scholar

  • [16]

    Kandlikar S. G., Colin S., Peles Y., Garimella S., Pease R. F., Brandner J. J. and Tuckerman D. B., Heat transfer in microchannels—2012 status and research needs, J. Heat Transfer 135 (2013), no. 9, Article ID 091001. Google Scholar

  • [17]

    LeBeau G. L. and Lumpkin Lii F. E., Application highlights of the DSMC Analysis Code (DAC) software for simulating rarefied flows, Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 6, 595–609. Google Scholar

  • [18]

    Liou W. W. and Fang Y., Microfluid Mechanics: Principles and Modeling, McGraw–Hill, New York, 2006. Google Scholar

  • [19]

    Loyalka S. K. and Hickey K. A., Velocity slip and defect: Hard-sphere gas, Phys. Fluids A1 (1989), 612–614. Google Scholar

  • [20]

    Marques, Jr. W., Kremer G. M. and Sharipov F., Couette flow with slip and jump boundary conditions, Contin. Mech. Thermodyn. 12 (2000), no. 6, 379–386. Google Scholar

  • [21]

    Mavriplis C., Ahn J. C. and Goulard R., Heat transfer and flowfields in short microchannels using direct simulation Monte Carlo, J. Thermophys. Heat Transfer 11 (1997), no. 4, 489–496. Google Scholar

  • [22]

    Morini G. L., Yang Y., Chalabi H. and Lorenzini M., A critical review of the measurement techniques for the analysis of gas microflows through microchannels, Exp. Therm. Fluid Sci. 35 (2011), no. 6, 849–865. Google Scholar

  • [23]

    Muntz E. P., Rarefied gas dynamics, Annu. Rev. Fluid Mech. 21 (1989), 387–417. Google Scholar

  • [24]

    Oran E. S., Oh C. K. and Cybyk B. Z., Direct simulation Monte Carlo: recent advances and applications, Annu. Rev. Fluid Mech. 30 (1998), 403–441. Google Scholar

  • [25]

    Piekos E. S. and Breuer K. S., Numerical modelling of micromechanical devices using the direct simulation Monte Carlo method, J. Fluids Engrg. 118 (1996), no. 3, 464–469. Google Scholar

  • [26]

    Reinecke S. and Kremer G. M., Burnett’s equations from a (13+9N)-field theory, Contin. Mech. Thermodyn. 8 (1996), 121–130. Google Scholar

  • [27]

    Roohi E. and Stefanov S., Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows, Phys. Rep. 656 (2016), 1–38. Google Scholar

  • [28]

    Sharipov F., Data on the velocity slip and temperature jump on a gas-solid interface, J. Phys. Chem. Ref. Data 40 (2011), no. 2, Article ID 023101. CrossrefGoogle Scholar

  • [29]

    Shen C., Fan J. and Xie C., Statistical simulation of rarefied gas flows in micro-channels, J. Comput. Phys. 189 (2003), no. 2, 512–526. Google Scholar

  • [30]

    Sobek D., Microfabricated fused silica flow chambers for flow cytometry, Ph.D. thesis, Massachusetts Institute of Technology, 1997. Google Scholar

  • [31]

    Sone Y., Ohwada T. and Aoki K., Temperature jump and Knudsen layer in a rarefied-gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules, Phys. Fluids A1 (1989), 363–370. Google Scholar

  • [32]

    Wang-Chang C. S. and Uhlenbeck G. E., On the transport phenomena in monatomic gases, Studies in Statistical Mechanics. Vol. V, North-Holland, Amsterdam (1970), 1–16. Google Scholar

  • [33]

    Widjaja I., A first functional current exited planar rotational magnetic micromotor, Proceedings of the Micro Electro Mechanical Systems (Fort Lauderdale 1993), IEEE, Piscataway (1993), 7–11. Google Scholar

  • [34]

    Yu S. and Ameel T. A., Slip-flow heat transfer in rectangular microchannels, Int. J. Heat Mass Transfer 44 (2001), no. 22, 4225–4234. Google Scholar

  • [35]

    Zhang W. M., Meng G. and Wei X., A review on slip models for gas microflows, Microfluid. Nanofluid. 13 (2012), no. 6, 845–882. Google Scholar

About the article

Received: 2015-03-30

Accepted: 2016-11-05

Published Online: 2016-11-17

Published in Print: 2016-12-01


Citation Information: Monte Carlo Methods and Applications, Volume 22, Issue 4, Pages 337–347, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/mcma-2016-0117.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J. Baliti, M. Hssikou, and M. Alaoui
Australian Journal of Mechanical Engineering, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in