Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.319
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Mathematical Citation Quotient (MCQ) 2018: 0.18

See all formats and pricing
More options …
Volume 24, Issue 1


Pricing barrier options in the Heston model using the Heath–Platen estimator

Sema Coskun / Ralf KornORCID iD: http://orcid.org/0000-0002-9123-3883
Published Online: 2018-02-01 | DOI: https://doi.org/10.1515/mcma-2018-0004


Both barrier options and the Heston stochastic volatility model are omnipresent in real-life applications of financial mathematics. In this paper, we apply the Heath–Platen (HP) estimator (as first introduced by Heath and Platen in [12]) to price barrier options in the Heston model setting as an alternative to conventional Monte Carlo methods and PDE based methods. We demonstrate the superior performance of the HP estimator via numerical examples and explain this performance by a detailed look at the underlying theoretical concept of the HP estimator.

Keywords: Barrier option pricing; Heston stochastic volatility model; Heath–Platen estimator

MSC 2010: 91G60


  • [1]

    M. Broadie, P. Glasserman and S. Kou, A continuity correction for discrete barrier options, Math. Finance 7 (1997), no. 4, 325–349. CrossrefGoogle Scholar

  • [2]

    M. Broadie, P. Glasserman and S. G. Kou, Connecting discrete and continuous path-dependent options, Finance Stoch. 3 (1999), no. 1, 55–82. CrossrefGoogle Scholar

  • [3]

    M. Broadie and O. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion processes, Oper. Res. 54 (2006), no. 2, 217–231. CrossrefGoogle Scholar

  • [4]

    S. Coskun, Application of the Heath–Platen Estimator in Pricing Barrier and Bond Options, PhD thesis, Department of Mathematics, University of Kaiserslautern, Germany, 2017. Google Scholar

  • [5]

    S. Desmettre and R. Korn, Computationally challenging problems in Finance, FPGA Based Accelerators for Financial Applications, Springer, Heidelberg (2015), 1–32. Google Scholar

  • [6]

    J.-P. Fouque and C.-H. Han, Variance reduction for Monte Carlo methods to evaluate option prices under multi-factor stochastic volatility models, Quant. Finance 4 (2004), no. 5, 597–606. CrossrefGoogle Scholar

  • [7]

    J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale stochastic volatility asymptotics, Multiscale Model. Simul. 2 (2003), no. 1, 22–42. CrossrefGoogle Scholar

  • [8]

    J.-P. Fouque and T. A. Tullie, Variance reduction for Monte Carlo simulation in a stochastic volatility environment, Quant. Finance 2 (2002), no. 1, 24–30. CrossrefGoogle Scholar

  • [9]

    H. Geman, N. El Karoui and J.-C. Rochet, Changes of numéraire, changes of probability measure and option pricing, J. Appl. Probab. 32 (1995), no. 2, 443–458. CrossrefGoogle Scholar

  • [10]

    P. Glasserman, Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Appl. Math. (New York) 53, Springer, New York, 2004. Google Scholar

  • [11]

    E. G. Haug, The Complete Guide to Option Pricing Formulas, 2nd ed., McGraw-Hill, USA, 2007. Google Scholar

  • [12]

    D. Heath and E. Platen, A variance reduction technique based on integral representations, Quant. Finance 2 (2002), no. 5, 362–369. CrossrefGoogle Scholar

  • [13]

    D. Heath and E. Platen, A Monte Carlo method using PDE expansions for a diversified equity index model, Research Paper 350, Quantitative Finance Research Center, University of Technology, Sydney, 2014. Google Scholar

  • [14]

    S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud. 6 (1993), no. 2, 327–343. CrossrefGoogle Scholar

  • [15]

    R. Korn, E. Korn and G. Kroisandt, Monte Carlo Methods and Models in Finance and Insurance, Chapman & Hall/CRC Financ. Math. Ser., CRC Press, Boca Raton, 2010. Google Scholar

  • [16]

    R. Lord, R. Koekkoek and D. Van Dijk, A comparison of biased simulation schemes for stochastic volatility models, Quant. Finance 10 (2010), no. 2, 177–194. CrossrefWeb of ScienceGoogle Scholar

  • [17]

    R. C. Merton, Theory of rational option pricing, Bell J. Econom. Manag. Sci. 4 (1973), 141–183. CrossrefGoogle Scholar

About the article

Received: 2017-08-31

Accepted: 2018-01-06

Published Online: 2018-02-01

Published in Print: 2018-03-01

This work was supported by the DFG-research training group 1932 “Stochastic models for innovations in the engineering sciences” of which Sema Coskun has been a doctoral researcher and Ralf Korn is the spokesperson. Both gratefully acknowledge the support of the DFG. The contents of this work is based on parts of the first author’s dissertation at the Department of Mathematics of TU Kaiserslautern.

Citation Information: Monte Carlo Methods and Applications, Volume 24, Issue 1, Pages 29–41, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/mcma-2018-0004.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hanbyeol Jang, Jian Wang, and Junseok Kim
Monte Carlo Methods and Applications, 2019, Volume 25, Number 4, Page 291
Yusuke Okano and Toshihiro Yamada
Monte Carlo Methods and Applications, 2019, Volume 25, Number 3, Page 239

Comments (0)

Please log in or register to comment.
Log in