Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

4 Issues per year

CiteScore 2017: 0.67

SCImago Journal Rank (SJR) 2017: 0.417
Source Normalized Impact per Paper (SNIP) 2017: 0.860

Mathematical Citation Quotient (MCQ) 2017: 0.25

See all formats and pricing
More options …
Volume 24, Issue 1


Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations

Anthony Le Cavil
  • ENSTA ParisTech, Université Paris-Saclay, Unité de Mathématiques Appliquées (UMA), 828 Bd. des Maréchaux, 91120 Palaiseau, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadia Oudjane
  • EDF Lab Paris-Saclay and FiME, Laboratoire de Finance des Marchés de l’Energie, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesco Russo
  • Corresponding author
  • ENSTA ParisTech, Université Paris-Saclay, Unité de Mathématiques Appliquées (UMA), 828 Bd. des Maréchaux, 91120 Palaiseau, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-26 | DOI: https://doi.org/10.1515/mcma-2018-0005


The paper is devoted to the construction of a probabilistic particle algorithm. This is related to a nonlinear forward Feynman–Kac-type equation, which represents the solution of a nonconservative semilinear parabolic partial differential equation (PDE). Illustrations of the efficiency of the algorithm are provided by numerical experiments.

Keywords: Semilinear partial differential equations; nonlinear Feynman–Kac-type functional; particle systems; Euler schemes

MSC 2010: 60H10; 60H30; 60J60; 65C05; 65C35; 68U20; 35K58


  • [1]

    N. Belaribi, F. Cuvelier and F. Russo, A probabilistic algorithm approximating solutions of a singular PDE of porous media type, Monte Carlo Methods Appl. 17 (2011), no. 4, 317–369. Google Scholar

  • [2]

    N. Belaribi, F. Cuvelier and F. Russo, Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 1, 3–62. Google Scholar

  • [3]

    A. Bensoussan, S. P. Sethi, R. Vickson and N. Derzko, Stochastic production planning with production constraints, SIAM J. Control Optim. 22 (1984), no. 6, 920–935. CrossrefGoogle Scholar

  • [4]

    D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control. The Discrete Time Case, Math. Sci. Eng. 139, Academic Press, New York, 1978. Google Scholar

  • [5]

    M. Bossy, L. Fezoui and S. Piperno, Comparison of a stochastic particle method and a finite volume deterministic method applied to Burgers equation, Monte Carlo Methods Appl. 3 (1997), no. 2, 113–140. CrossrefGoogle Scholar

  • [6]

    M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation, Ann. Appl. Probab. 6 (1996), no. 3, 818–861. CrossrefGoogle Scholar

  • [7]

    B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl. 111 (2004), no. 2, 175–206. CrossrefGoogle Scholar

  • [8]

    P. Cheridito, H. M. Soner, N. Touzi and N. Victoir, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Comm. Pure Appl. Math. 60 (2007), no. 7, 1081–1110. CrossrefGoogle Scholar

  • [9]

    F. Delarue and S. Menozzi, An interpolated stochastic algorithm for quasi-linear PDEs, Math. Comp. 77 (2008), no. 261, 125–158. CrossrefGoogle Scholar

  • [10]

    E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab. 15 (2005), no. 3, 2172–2202. CrossrefGoogle Scholar

  • [11]

    A. G. Gray and A. W. Moore, Nonparametric density estimation: Toward computational tractability, Proceedings of the 2003 SIAM International Conference on Data Mining, SIAM, Philadelphia (2003), 203–211. Google Scholar

  • [12]

    P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint (2012), http://ssrn.com/abstract=1995503.

  • [13]

    P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi and X. Warin, Branching diffusion representation of semilinear pdes and Monte Carlo approximations, preprint (2016), https://arxiv.org/abs/1603.01727v1.

  • [14]

    P. Henry-Labordère, X. Tan and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Process. Appl. 124 (2014), no. 2, 1112–1140. CrossrefWeb of ScienceGoogle Scholar

  • [15]

    B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998), no. 6, 727–766. CrossrefGoogle Scholar

  • [16]

    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. Web of ScienceGoogle Scholar

  • [17]

    A. Le Cavil, N. Oudjane and F. Russo, Probabilistic representation of a class of non-conservative nonlinear partial differential equations, ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 2, 1189–1233. Google Scholar

  • [18]

    A. Le Cavil, N. Oudjane and F. Russo, Forward Feynman–Kac type representation for semilinear nonconservative partial differential equations, preprint (2017), https://hal.archives-ouvertes.fr/hal-01353757v3/document.

  • [19]

    A. Le Cavil, N. Oudjane and F. Russo, Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations, Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017), no. 1, 1–37. Web of ScienceGoogle Scholar

  • [20]

    E. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, Stochastic Analysis and Related Topics VI (Geilo 1996), Progr. Probab. 42, Birkhäuser, Boston (1998), 79–127. Google Scholar

  • [21]

    E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55–61. CrossrefGoogle Scholar

  • [22]

    E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stoch. Model. Appl. Probab. 69, Springer, Cham, 2014. Google Scholar

  • [23]

    B. W. Silverman, Density Estimation for Statistics and Data Analysis, Monogr. Statist. Appl. Probab., Chapman & Hall, London, 1986. Google Scholar

About the article

Received: 2017-09-13

Accepted: 2018-01-05

Published Online: 2018-01-26

Published in Print: 2018-03-01

Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: CRC 1283

The financial support for the third-named author was partially provided by the DFG through the CRC 1283, “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their application”.

Citation Information: Monte Carlo Methods and Applications, Volume 24, Issue 1, Pages 55–70, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/mcma-2018-0005.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in