Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Monte Carlo Methods and Applications

Managing Editor: Sabelfeld, Karl K.

Editorial Board: Binder, Kurt / Bouleau, Nicolas / Chorin, Alexandre J. / Dimov, Ivan / Dubus, Alain / Egorov, Alexander D. / Ermakov, Sergei M. / Halton, John H. / Heinrich, Stefan / Kalos, Malvin H. / Lepingle, D. / Makarov, Roman / Mascagni, Michael / Mathe, Peter / Niederreiter, Harald / Platen, Eckhard / Sawford, Brian R. / Schmid, Wolfgang Ch. / Schoenmakers, John / Simonov, Nikolai A. / Sobol, Ilya M. / Spanier, Jerry / Talay, Denis

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.319
Source Normalized Impact per Paper (SNIP) 2018: 0.720

Mathematical Citation Quotient (MCQ) 2017: 0.25

See all formats and pricing
More options …
Volume 24, Issue 4


On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters

Harold A. Lay / Zane Colgin / Viktor Reshniak / Abdul Q. M. Khaliq
  • Department of Mathematical Sciences and Center for Computational Science, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37130, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-30 | DOI: https://doi.org/10.1515/mcma-2018-2025


We explore different methods of solving systems of stochastic differential equations by first implementing the Euler–Maruyama and Milstein methods with a Monte Carlo simulation on a CPU. The performance of the methods is significantly improved through the recently developed antithetic multilevel Monte Carlo estimator, which yields a computation complexity of 𝒪(ϵ-2) root-mean-square error and does so without the approximation of Lévy areas. Further improvements in performance are gained by moving the algorithms to a GPU - first on a single device and then on a multi-GPU cluster. Our GPU implementation of the antithetic multilevel Monte Carlo displays a major speedup in computation when compared with many commonly used approaches in the literature. While our work is focused on the simulation of the stochastic volatility and interest rate model, it is easily extendable to other stochastic systems, and it is of particular interest to those with non-diagonal, non-commutative noise.

Keywords: Stochastic volatility; stochastic interest rate; multilevel Monte Carlo; GPU; multi-node GPU cluster

MSC 2010: 60G99


  • [1]

    D. F. Anderson and D. J. Higham, Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics, Multiscale Model. Simul. 10 (2012), no. 1, 146–179. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, J. Finance 52 (1997), no. 5, 2003–2049. CrossrefGoogle Scholar

  • [3]

    A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations, Int. J. Comput. Math. 89 (2012), no. 18, 2479–2498. Web of ScienceCrossrefGoogle Scholar

  • [4]

    F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), no. 3, 637–654. CrossrefGoogle Scholar

  • [5]

    S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K. Skadron, A performance study of general-purpose applications on graphics processors using CUDA, J. Parallel Distrib. Comput. 68 (2008), no. 10, 1370–1380. Web of ScienceCrossrefGoogle Scholar

  • [6]

    J. M. C. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, Stochastic Differential Systems (Vilnius 1978), Lecture Notes in Control and Inform. Sci. 25, Springer, Berlin (1980), 162–171. Google Scholar

  • [7]

    A. M. Dimits, B. I. Cohen, R. E. Caflisch, M. S. Rosin and L. F. Ricketson, Higher-order time integration of Coulomb collisions in a plasma using Langevin equations, J. Comput. Phys. 242 (2013), 561–580. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    J. G. Gaines and T. J. Lyons, Random generation of stochastic area integrals, SIAM J. Appl. Math. 54 (1994), no. 4, 1132–1146. CrossrefGoogle Scholar

  • [9]

    J. G. Gaines and T. J. Lyons, Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math. 57 (1997), no. 5, 1455–1484. CrossrefGoogle Scholar

  • [10]

    M. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin (2008), 343–358. Google Scholar

  • [11]

    M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607–617. Web of ScienceCrossrefGoogle Scholar

  • [12]

    M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation, Ann. Appl. Probab. 24 (2014), no. 4, 1585–1620. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    P. Glasserman, Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, Appl. Math. (New York) 53, Springer, New York, 2004. Google Scholar

  • [14]

    L. A. Grzelak and C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financial Math. 2 (2011), no. 1, 255–286. Web of ScienceCrossrefGoogle Scholar

  • [15]

    S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud. 6 (1993), no. 2, 327–343. CrossrefGoogle Scholar

  • [16]

    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. Google Scholar

  • [17]

    P. E. Kloeden, E. Platen and I. W. Wright, The approximation of multiple stochastic integrals, Stoch. Anal. Appl. 10 (1992), no. 4, 431–441. CrossrefGoogle Scholar

  • [18]

    S. J. A. Malham and A. Wiese, Efficient almost-exact Lévy area sampling, Statist. Probab. Lett. 88 (2014), 50–55. CrossrefGoogle Scholar

  • [19]

    A. Medvedev and O. Scaillet, Pricing American options under stochastic volatility and stochastic interest rates, J. Financial Econ. 98 (2010), no. 1, 145–159. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    T. Müller-Gronbach, Strong approximation of systems of stochastic differential equations, Habilitation Thesis, TU Darmstadt, 2002. Google Scholar

  • [21]

    L. F. Ricketson, Three improvements to multi-level Monte Carlo simulation of SDE systems, preprint (2013), https://arxiv.org/abs/1309.1922.

  • [22]

    T. Rydén and M. Wiktorsson, On the simulation of iterated Itô integrals, Stochastic Process. Appl. 91 (2001), no. 1, 151–168. CrossrefGoogle Scholar

  • [23]

    M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions, Ann. Appl. Probab. 11 (2001), no. 2, 470–487. CrossrefGoogle Scholar

  • [24]

    Y. Xia and M. B. Giles, Multilevel path simulation for jump-diffusion SDEs, Monte Carlo and Quasi-Monte Carlo methods 2010, Springer Proc. Math. Stat. 23, Springer, Heidelberg (2012), 695–708. Google Scholar

About the article

Received: 2018-05-02

Revised: 2018-09-27

Accepted: 2018-10-14

Published Online: 2018-10-30

Published in Print: 2018-12-01

Citation Information: Monte Carlo Methods and Applications, Volume 24, Issue 4, Pages 309–321, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, DOI: https://doi.org/10.1515/mcma-2018-2025.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in