Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Climate and Weather Forecasting

Ed. by Khouider, Boualem

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Initiation and termination of intraseasonal oscillations in nonlinear Laplacian spectral analysis-based indices

Eniko Székely
  • Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dimitrios Giannakis
  • Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. Majda
  • Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-07 | DOI: https://doi.org/10.1515/mcwf-2016-0001


We present a statistical analysis of the initiation and termination of boreal winter and boreal summer intraseasonal oscillations (ISOs). This study uses purely convection (infrared brightness temperature) data over a 23-year time interval from 1984–2006. The indices are constructed via the nonlinear Laplacian spectral analysis (NLSA) method and display high intermittency and non-Gaussian statistics. We first define primary, terminal, and full events in the NLSA-based indices, and then examine their statistics through the associated two-dimensional phase space representations. Roughly one full event per year was detected for the Madden-Julian oscillation (MJO), and 1.3 full events per year for the boreal summer ISO.We also find that 91%of the recovered full MJO events are circumnavigating and exhibit very little to no retrograde (westward) propagation. The Indian Ocean emerges as the most active region in terms of both the onset and decay of events, however relevant activity occurs over all phases, consistent with previous work.

Keywords: Nonlinear Laplacian spectral analysis (NLSA); Madden-Julian oscillation; tropical intraseasonal oscillations


  • [1] Aubry, N., Lian, W.-Y., and Titi, E. S. (1993). Preserving symmetries in the proper orthogonal decomposition. SIAM J. Sci. Comput., 14, 483–505. Google Scholar

  • [2] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15, 1373–1396. CrossrefGoogle Scholar

  • [3] Berry, T., Cressman, R., Greguric Ferencek, Z., and Sauer, T. (2013). Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Sys., 12, 618–649. Google Scholar

  • [4] Broomhead, D. S. and King, G. P. (1986). Extracting qualitative dynamics from experimental data. Phys. D, 20(2–3), 217–236. Google Scholar

  • [5] Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Appl. Comput. Harmon. Anal., 21, 5–30. CrossrefWeb of ScienceGoogle Scholar

  • [6] Ghil, M. et al. (2002). Advanced spectral methods for climatic time series. Rev. Geophys., 40. Google Scholar

  • [7] Giannakis, D. and Majda, A. J. (2012). Nonlinear Laplacian spectral analysis for time series with intermittency and lowfrequency variability. Proc. Natl. Acad. Sci., 109(7), 2222–2227. CrossrefGoogle Scholar

  • [8] Giannakis, D. and Majda, A. J. (2013). Nonlinear Laplacian spectral analysis: Capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. Anal. Data Min., 6(3), 180–194. Google Scholar

  • [9] Giannakis, D. andMajda, A. J. (2014). Data-driven methods for dynamical systems: Quantifying predictability and extracting spatiotemporal patterns. In R. Melnik, editor,Mathematical and ComputationalModeling:With Applications in Engineering and the Natural and Social Sciences, page 288. Wiley, Hoboken. Google Scholar

  • [10] Goswami, B. N. (2011). South Asian monsoon. InW. Lau and D.Waliser, editors, Intraseasonal Variability of the Atmosphere- Ocean Climate System, pages 21–64. Springer. Google Scholar

  • [11] Hendon, H. H. and Salby, M. L. (1994). The life cycle of the Madden-Julian oscillation. Journal of the Atmospheric Sciences, 51(15), 2225–2237. Google Scholar

  • [12] Hendon, H. H., Wheeler, M. C., and Zhang, C. (2007). Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543. CrossrefWeb of ScienceGoogle Scholar

  • [13] Hodges, K., Chappell, D., Robinson, G., and Yang, G. (2000). An improved algorithm for generating globalwindowbrightness temperatures from multiple satellite infra-red imagery. J. Atmos. Oceanic Technol., 17, 1296–1312. CrossrefGoogle Scholar

  • [14] Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, D., and Weaver, S. J. (2013). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 6185–6214. CrossrefGoogle Scholar

  • [15] Kessler, W. (2011). The oceans. In W. K. Lau and D. E. Waliser, editors, Intraseasonal Variability in the Atmosphere-Ocean Climate System, pages 199–236. Springer. Google Scholar

  • [16] Kessler, W. S. (2001). EOF representations of the Madden-Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061. CrossrefGoogle Scholar

  • [17] Khouider, B. and Majda, A. (2006). A simple multicloud parameterization for convectively coupled tropical waves. part I: Linear analysis. Journal of the Atmospheric Sciences, 63, 1308–1323. Google Scholar

  • [18] Kikuchi, K. and Wang, B. (2010). Spatiotemporal wavelet transform and the multiscale behavior of the Madden-Julian oscillation. J. Climate, 23, 3814–3834. CrossrefWeb of ScienceGoogle Scholar

  • [19] Kikuchi, K., Wang, B., and Kajikawa, Y. (2012). Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000. Google Scholar

  • [20] Kiladis, G. N., Straub, K. H., and T., H. P. (2005). Zonal and vertical structure of the Madden—Julian oscillation. J. Atmos. Sci., 62, 2790–2809. CrossrefGoogle Scholar

  • [21] Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., and Ventrice, M. J. (2014). A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715. Web of ScienceGoogle Scholar

  • [22] Lau,W. K. M. andWaliser, D. E. (2011). Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer-Verlag, Berlin. Google Scholar

  • [23] Lee, J.-Y.,Wang, B., Wheeler, M., Xiouhua, F.,Waliser, D., and Kang, I.-S. (2013). Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 40, 493–509. CrossrefWeb of ScienceGoogle Scholar

  • [24] Ling, J., Li, C., Zhou, W., and Jia, X. (2014). To begin or not to begin? A case study on the MJO initiation problem. Theoretical and Applied Climatology, 115(1-2), 231–241. CrossrefGoogle Scholar

  • [25] Lo, F. and Hendon, H. (2000). Empirical extended-range prediction of the Madden-Julian oscillation. Mon. Wea. Rev., 128. Google Scholar

  • [26] Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5). Google Scholar

  • [27] Madden, R. A. and Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29(6), 1109–1123. CrossrefGoogle Scholar

  • [28] Maloney, E. D. and Hartmann, D. L. (1998). Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation. J. Climate, 11, 2387–2403. CrossrefGoogle Scholar

  • [29] Matthews, A. J. (2008). Primary and successive events in the Madden–Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 134(631), 439–453. Web of ScienceGoogle Scholar

  • [30] Packard, N. H. et al. (1980). Geometry from a time series. Phys. Rev. Lett., 45, 712–716. CrossrefGoogle Scholar

  • [31] Roundy, P. E. and Schreck, C. J. I. (2009). A combined wavenumber–frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Q. J. R. Meteorol. Soc., 135, 161–173. Google Scholar

  • [32] Sauer, T., Yorke, J. A., and Casdagli, M. (1991). Embedology. J. Stat. Phys., 65(3–4), 579–616. CrossrefGoogle Scholar

  • [33] Shabbar, A. and Yu, B. (2009). The 1998–2000 la niña in the context of historically strong la niña events. Journal of Geophysical Research: Atmospheres, 114(D13). Web of ScienceGoogle Scholar

  • [34] Stachnik, J., Waliser, D., and Majda, A. J. (2015). Precursor environmental conditions associated with the termination of Madden–Julian oscillation events. J. Atmos. Sci., 72, 1908–1931. CrossrefWeb of ScienceGoogle Scholar

  • [35] Straub, K. H. (2013). MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 1130–1151. CrossrefWeb of ScienceGoogle Scholar

  • [36] Székely, E., Giannakis, D., andMajda, A. J. (2015). Extraction and predictability of coherent intraseasonal signals in infrared brightness temperature data. Climate Dyn., 46(5), 1473–1502. Google Scholar

  • [37] Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, volume 898 of Lecture Notes in Mathematics, pages 366–381. Springer, Berlin. Google Scholar

  • [38] Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055–1096. CrossrefGoogle Scholar

  • [39] Tung, W.-w., Giannakis, D., and Majda, A. J. (2014). Symmetric and antisymmetric signals in MJO deep convection. Part I: Basic modes in infrared brightness temperature. J. Atmos. Sci., 71, 3302–3326. CrossrefGoogle Scholar

  • [40] Ventrice, M. Wheeler, M., Hendon, H., Schreck, C., Thorncroft, C., and Kiladis, G. (2013). A modified multivariate Madden- Julian oscillation index using velocity potential. Mon. Wea. Rev., 141(12), 4197–4210. Web of ScienceGoogle Scholar

  • [41] Waliser, D. (2011). Predictability and forecasting. In W. K. Lau and D. E. Waliser, editors, Intraseasonal Variability in the Atmosphere-Ocean Climate System, pages 433–468. Springer. Google Scholar

  • [42] Wang, B. and Rui, H. (1990). Synoptic climatology of transient tropical intraseasonal convection a nomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61. Google Scholar

  • [43] Wheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56(3), 374–399. CrossrefGoogle Scholar

  • [44] Wheeler, M. C. and Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132(8), 1917–1932. Google Scholar

  • [45] Yoneyama, K., Zhang, C., and Long, C. N. (2013). Tracking pulses of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891. CrossrefGoogle Scholar

  • [46] Zhang, C. (2005). The Madden-Julian oscillation. Rev. Geophys., 43, RG2003. CrossrefWeb of ScienceGoogle Scholar

  • [47] Zhang, C. (2013). Madden-Julian oscillation: bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870. CrossrefGoogle Scholar

  • [48] Zhang, C. and Gottschalck, J. (2002). SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific. Journal of Climate, 15, 2429–2445. CrossrefGoogle Scholar

About the article

Received: 2015-12-03

Accepted: 2016-01-16

Published Online: 2016-07-07

Citation Information: Mathematics of Climate and Weather Forecasting, Volume 2, Issue 1, ISSN (Online) 2353-6438, DOI: https://doi.org/10.1515/mcwf-2016-0001.

Export Citation

© 2016 Eniko Székely et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in