Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 14, 2016

An object-based model for convective cold pool dynamics

  • S.J. Böing

Abstract

A simple model of the organization of atmospheric moist convection by cold outflows is presented. The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also induce particle movement in the lower layer: this reverse coupling represents the effect of precipitation and the associated cold outflows.

The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation of physical processes in convection, it captures some key dynamical features of precipitating convection seen in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in convective intensity, hysteresis, and the effect of precipitation on the scale of convection. We argue that an object-based representation of convection may be able to capture properties of convective organization that are missing in traditional parameterizations.

References

[1] B. Stevens, G. Vali, K. Comstock, R. Wood, et al. Pockets of open cells and drizzle in marine stratocumulus. Bull. Am. Meteorol. Soc., 86(1):51, 2005. 10.1175/BAMS-86-1-51Search in Google Scholar

[2] M. A. Lima and J. W. Wilson. Convective storm initiation in a moist tropical environment. Mon. Weath. Rev., 136(6):1847– 1864, 2008. 10.1175/2007MWR2279.1Search in Google Scholar

[3] J. H. Ruppert Jr and R. H. Johnson. Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian Oscillation during DYNAMO. J. Atmos. Sci, 72(4):1622–1647, 2015. 10.1175/JAS-D-14-0218.1Search in Google Scholar

[4] M. Khairoutdinov and D. Randall. High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci, 63(12):3421–3436, 2006. 10.1175/JAS3810.1Search in Google Scholar

[5] S. J. Böing, H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski. Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci, 69(9):2682–2697, 2012. 10.1175/JAS-D-11-0317.1Search in Google Scholar

[6] H. Wang and G. Feingold. Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci, 66(11):3237–3256, 2009. Search in Google Scholar

[7] A. M. Tompkins. Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci, 58(13): 1650–1672, 2001. Search in Google Scholar

[8] L. Schlemmer and C. Hohenegger. The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci, 71(8):2842–2858, 2014. 10.1175/JAS-D-13-0170.1Search in Google Scholar

[9] Z. Feng, S. Hagos, A. K. Rowe, C. D. Burleyson, M. N.Martini, and S. P. Szoeke. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Mod. Earth. Sys., 7(2):357–381, 2015. 10.1002/2014MS000384Search in Google Scholar

[10] N. Jeevanjee and D. M. Romps. Effective buoyancy, inertial pressure, and the mechanical generation of boundary layermass flux by cold pools. J. Atmos. Sci, 72(8):3199–3213, 2015. 10.1175/JAS-D-14-0349.1Search in Google Scholar

[11] T. Heus and A. Seifert. Automated tracking of shallowcumulus clouds in largedomain, long duration Large Eddy Simulations. Geosci. Model Dev. Disc., 6(2):2287–2323, 2013. 10.5194/gmdd-6-2287-2013Search in Google Scholar

[12] C. S. Bretherton, T. Uttal, C. W. Fairall, S. E. Yuter, et al. The EPIC 2001 stratocumulus study. Bull. Am. Meteorol. Soc., 85(7): 967, 2004. 10.1175/BAMS-85-7-967Search in Google Scholar

[13] A. Berner, C. Bretherton, and R. Wood. Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06. Atmos. Chem. Phys., 11(20):10525–10540, 2011. 10.5194/acp-11-10525-2011Search in Google Scholar

[14] G. Feingold, I. Koren, T. Yamaguchi, and J. Kazil. On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15(13):7351–7367, 2015. 10.5194/acp-15-7351-2015Search in Google Scholar

[15] H.Wang, G. Feingold, R. Wood, and J. Kazil. Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus. Atmos. Chem. Phys., 10(13):6347–6362, 2010. 10.5194/acp-10-6347-2010Search in Google Scholar

[16] T. Yamaguchi and G. Feingold. On the relationship between open cellular convective cloud patterns and the spatial distribution of precipitation. Atmos. Chem. Phys., 15:1237–1251, 2015. 10.5194/acp-15-1237-2015Search in Google Scholar

[17] B. Mapes and R. Neale. Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Mod. Earth. Sys., 3:M06004, 2011. 10.1029/2011MS000042Search in Google Scholar

[18] J.-Y. Grandpeix and J.-P. Lafore. A density current parameterization coupled with Emanuel’s convection scheme. Part I: the models. J. Atmos. Sci, 67:881–897, 2010. Search in Google Scholar

[19] L. Davies, R. S. Plant, and S. H. Derbyshire. A simple model of convection with memory. J. Geophys. Res., 114(D17):D17202, 2009. 10.1029/2008JD011653Search in Google Scholar

[20] B. Khouider, J. Biello, A. J. Majda, et al. A stochastic multicloud model for tropical convection. Comm. in Math. Sciences, 8 (1):187–216, 2010. 10.4310/CMS.2010.v8.n1.a10Search in Google Scholar

[21] D. A. Randall and G. J. Huffman. A stochastic model of cumulus clumping. J. Atmos. Sci, 37(9):2068–2078, 1980. 10.1175/1520-0469(1980)037<2068:ASMOCC>2.0.CO;2Search in Google Scholar

[22] G. Feingold and I. Koren. A model of coupled oscillators applied to the aerosol–cloud–precipitation system. Nonlinear Proc. in Geophysics, 20(6):1011–1021, 2013. 10.5194/npg-20-1011-2013Search in Google Scholar

[23] T. N. Palmer. A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteorol. Soc., 127(572):279–304, 2001. Search in Google Scholar

[24] G. Shutts. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteorol. Soc., 131 (612):3079–3102, 2005. 10.1256/qj.04.106Search in Google Scholar

[25] L. Bengtsson, H. Körnich, E. Källén, and G. Svensson. Large-scale dynamical response to subgrid-scale organization provided by cellular automata. J. Atmos. Sci, 68(12):3132–3144, 2011. 10.1175/JAS-D-10-05028.1Search in Google Scholar

[26] L. Bengtsson, M. Steinheimer, P. Bechtold, and J.-F. Geleyn. A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteorol. Soc., 139(675):1533–1543, 2013. 10.1002/qj.2108Search in Google Scholar

[27] J. Dorrestijn, D. Crommelin, J. Biello, and S. Böing. A data-driven multi-cloud model for stochastic parametrization of deep convection. Phil. Trans. of the Roy. Soc. A, 371(1991), 2013. 10.1098/rsta.2012.0374Search in Google Scholar PubMed

[28] R. Plant and G. C. Craig. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci, 65(1):87–105, 2008. 10.1175/2007JAS2263.1Search in Google Scholar

[29] M. Sakradzija, A. Seifert, and T. Heus. Fluctuations in a quasi-stationary shallowcumulus cloud ensemble. Nonlin. Processes Geophys., 1:1223–1282, 2014. 10.5194/npgd-1-1223-2014Search in Google Scholar

[30] G. C. Craig and B. G. Cohen. Fluctuations in an equilibrium convective ensemble. Part I: theoretical formulation. J. Atmos. Sci, 63(8):1996–2004, 2006. Search in Google Scholar

[31] T. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer. Stochastic parametrization and model uncertainty. European Centre for Medium-Range Weather Forecasts, 2009. Search in Google Scholar

[32] H. Christensen, I. Moroz, and T. Palmer. Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci, 72(6):2525–2544, 2015. 10.1175/JAS-D-14-0250.1Search in Google Scholar

[33] K. Kober and G. C. Craig. Physically-based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation. Journal of the Atmospheric Sciences, 2016. 10.1175/JAS-D-15-0144.1Search in Google Scholar

[34] J. Harlim and A.Majda. Filtering nonlinear dynamical systems with linear stochastic models. Nonlinearity, 21(6):1281, 2008. 10.1088/0951-7715/21/6/008Search in Google Scholar

[35] M. Würsch and G. C. Craig. A simple dynamical model of cumulus convection for data assimilation research. Met. Zeitschrift, 23(5):483–490, 2014. 10.1127/0941-2948/2014/0492Search in Google Scholar

[36] C. Hohenegger and C. Schär. Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci, 64(12): 4467–4478, 2007. 10.1175/2007JAS2143.1Search in Google Scholar

[37] T. Selz and G. C. Craig. Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Weath. Rev., 143(3):813–827, 2015. 10.1175/MWR-D-14-00140.1Search in Google Scholar

[38] P. Bak, C. Tang, K. Wiesenfeld, et al. Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987. Search in Google Scholar

[39] R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zapperi. Paths to self-organized criticality. Braz. J. of Phys., 30(1):27–41, 2000. 10.1590/S0103-97332000000100004Search in Google Scholar

[40] O. Peters, C. Hertlein, and K. Christensen. A complexity view of rainfall. Phys. Rev. Lett., 88(1):018701, 2001. 10.1103/PhysRevLett.88.018701Search in Google Scholar

[41] O. Peters and J. D. Neelin. Critical phenomena in atmospheric precipitation. Nature physics, 2(6):393–396, 2006. 10.1038/nphys314Search in Google Scholar

[42] J.-I. Yano, C. Liu, and M. W. Moncrieff. Self-organized criticality and homeostasis in atmospheric convective organization. Journal of the Atmospheric Sciences, 69(12):3449–3462, 2012. 10.1175/JAS-D-12-069.1Search in Google Scholar

[43] F. Spineanu, M. Vlad, and D. Palade. Regimes of self-organized criticality in the atmospheric convection. "arXiv, 1404.4538, 2014. 10.1142/9781783266913_0032Search in Google Scholar

[44] R. Neggers, H. Jonker, and A. Siebesma. Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci, 60(8):1060–1074, 2003. 10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2Search in Google Scholar

[45] O. Peters, J. D. Neelin, and S.W. Nesbitt. Mesoscale convective systems and critical clusters. J. Atmos. Sci, 66(9):2913–2924, 2009. 10.1175/2008JAS2761.1Search in Google Scholar

[46] R. Wood and P. R. Field. The distribution of cloud horizontal sizes. J. Clim., 24(18):4800–4816, 2011. 10.1175/2011JCLI4056.1Search in Google Scholar

[47] B. G. Cohen and G. C. Craig. Fluctuations in an equilibrium convective ensemble. Part II: numerical experiments. J. Atmos. Sci, 63(8):2005–2015, 2006. Search in Google Scholar

[48] R. Keane and R. Plant. Large-scale length and time-scales for use with stochastic convective parametrization. Quart. J. Roy. Meteorol. Soc., 138(666):1150–1164, 2012. 10.1002/qj.992Search in Google Scholar

[49] B. E. Mapes. Gregarious tropical convection. Journal of the atmospheric sciences, 50(13):2026–2037, 1993. 10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2Search in Google Scholar

[50] A. Ross, A. Tompkins, and D. Parker. Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci, 61(13):1582–1595, 2004. 10.1175/1520-0469(2004)061<1582:SMOTRO>2.0.CO;2Search in Google Scholar

[51] F. Pantillon, P. Knippertz, J. H. Marsham, and C. E. Birch. A parameterization of convective dust storms for models with mass-flux convection schemes. J. Atmos. Sci, 72(6):2545–2561, 2015. 10.1175/JAS-D-14-0341.1Search in Google Scholar

[52] D. M. Romps and N. Jeevanjee. On the sizes and lifetimes of cold pools. Quart. J. Roy. Meteorol. Soc., 2016. 10.1002/qj.2754Search in Google Scholar

[53] P. Coates. Review paper: some experiments using agent modelling at CECA. In Proc. .7th Generative Art Conf. (GA2004), pages 14–16. Generative Design Lab, 2004. Search in Google Scholar

[54] G. Feingold, I. Koren, H. Wang, H. Xue, and W. A. Brewer. Precipitation-generated oscillations in open cellular cloud fields. Nature, 466(7308):849–852, 2010. 10.1038/nature09314Search in Google Scholar

[55] R. Neggers. Exploring bin-macrophysics models for moist convective transport and clouds. Journal of Advances inModeling Earth Systems, 7(4):2079–2104, 2015. 10.1002/2015MS000502Search in Google Scholar

[56] T. M.Wagner and H.-F. Graf. An ensemble cumulus convection parameterization with explicit cloud treatment. Journal of the Atmospheric Sciences, 67(12):3854–3869, 2010. 10.1175/2010JAS3485.1Search in Google Scholar

Received: 2016-4-29
Accepted: 2016-11-15
Published Online: 2016-12-14

© 2016 S.J. Böing

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/mcwf-2016-0003/html
Scroll to top button