Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Climate and Weather Forecasting

Ed. by Khouider, Boualem

Open Access
See all formats and pricing
More options …

Research Article. On memory, dimension, and atmospheric teleconnections

Terence. J. O’Kane / Didier P. Monselesan / James S. Risbey / Illia Horenko / Christian L. E. Franzke
  • Meteorological Institute and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-04 | DOI: https://doi.org/10.1515/mcwf-2017-0001


Using reanalysed atmospheric data and applying a data-driven multiscale approximation to non-stationary dynamical processes, we undertake a systematic examination of the role of memory and dimensionality in defining the quasi-stationary states of the troposphere over the recent decades. We focus on the role of teleconnections characterised by either zonally-oriented wave trains or meridional dipolar structures. We consider the impact of various strategies for dimension reduction based on principal component analysis, diagonalization and truncation.We include the impact of memory by consideration of Bernoulli, Markovian and non-Markovian processes. We a priori explicitly separate barotropic and baroclinic processes and then implement a comprehensive sensitivity analysis to the number and type of retained modes. Our results show the importance of explicitly mitigating the deleterious impacts of signal degradation through ill-conditioning and under sampling in preference to simple strategies based on thresholds in terms of explained variance. In both hemispheres, the results obtained for the dominant tropospheric modes depend critically on the extent to which the higher order modes are retained, the number of free model parameters to be fitted, and whether memory effects are taken into account. Our study identifies the primary role of the circumglobal teleconnection pattern in both hemispheres for Bernoulli and Markov processes, and the transient nature and zonal structure of the Southern Hemisphere patterns in relation to their Northern Hemisphere counterparts. For both hemispheres, overfitted models yield structures consistent with the major teleconnection modes (NAO, PNA and SAM), which give way to zonally oriented wavetrains when either memory effects are ignored or where the dimension is reduced via diagonalising. Where baroclinic processes are emphasised, circumpolar wavetrains are manifest.

Keywords : atmospheric teleconnections; stochastic modelling; dimension reduction


  • [1] Akaike H., Information Theory and an Extension of the Maximum Likelihood Principle, in Selected Papers of Hirotugu Akaike, Eds. E. Parzen, K. Tanabe and G. Kitagawa, Springer, New York (1988).Google Scholar

  • [2] Ambrizzi T., Hoskins B. J., Hsu H. -H. , Rossby wave propagation and teleconnection patterns in the austral winter, J. Atmos. Sci., 1995, 52(21), 3661-3672CrossrefGoogle Scholar

  • [3] Barnston A. G., Livezey R. E. , Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 1987, 115(6), 1083-1126Google Scholar

  • [4] Branstator G., Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation, J. Clim., 2002, 15(14), 1893-1910Google Scholar

  • [5] Bouchet F., Simonnet E., Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Lett., 2009, 102(9), 094504Web of ScienceGoogle Scholar

  • [6] Charney J., DeVore J., Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 1979, 36, 1205-1216CrossrefGoogle Scholar

  • [7] Franzke C. L. E., Horenko I., Majda A. J., Klein R., Systematic Metastable Atmospheric Regime Identification in an AGCM, J. Atmos. Sci., 2009, 66, 1998-2012Google Scholar

  • [8] Franzke C. L. E., O’Kane T. J., Monselesan D. P., Risbey J. S., Horenko I., Systematic attribution of observed Southern Hemispheric circulation trends to external forcing and internal variability, Nonlin. Processes Geophys. Discuss., 2015, 2, 675-707Google Scholar

  • [9] Frederiksen C. S., Zheng X., Grainger S., Simulated modes of inter-decadal predictability in sea surface temperature, Clim. Dyn., 2015, DOI 10.1007/s00382-015-2699-6CrossrefWeb of ScienceGoogle Scholar

  • [10] Giannakis, D., Majda A. J., Quantifying the Predictive Skill in Long-Range Forecasting. Part I: Coarse-grained predictions in a simple ocean model, J. Climate, 2012 25, 1793-1813Web of ScienceGoogle Scholar

  • [11] Giannakis, D., Majda A. J., Quantifying the Predictive Skill in Long-Range Forecasting. Part II: Model Error in Coarse- Grained Markov Models with Application to Ocean-Circulation Regimes, J. Climate, 2012, 25, 1814-1827CrossrefWeb of ScienceGoogle Scholar

  • [12] Granger C. W. J., Some recent development in a concept of causality, Econometrics, 1988, 39, 199-211Google Scholar

  • [13] Horenko I., On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns, J. Atmos. Sci., 2009, 66, 2059-2072Web of ScienceGoogle Scholar

  • [14] Horenko I., On clustering of non-stationary meteorological time series, Dyn. Atmos. Oceans, 2010, 49, 164-187Web of ScienceGoogle Scholar

  • [15] Horenko I., On the identification of nonstationary factor models and their application to atmospheric data analysis, J. Atmos. Sci., 2010, 67 (5), 1559-1574Web of ScienceGoogle Scholar

  • [16] Horenko I., Finite Element Approach to Clustering of Multidimensional Time Series, SIAM J. Sci. Comput., 2010, 31(1), 62-83Web of ScienceCrossrefGoogle Scholar

  • [17] Horenko I., On the analysis of nonstationary categorical data time series: dynamical dimension reduction, model selection, and applications to computational sociology. Multiscale Model. Simul., 2011, 9(4), 1700-1726Google Scholar

  • [18] Horenko I., Gerber S., O’Kane T. J., Risbey J. S., Monselesan D. P., On Inference and Validation of Causality Relations in Climate Teleconnections, 2017, Chapt. 5, 136-159, Nonlinear and Stochastic Climate Dynamics, Eds Franzke, C. L. E. and T. J. O’Kane, 483pp, Cambridge University Press, Cambridge UKGoogle Scholar

  • [19] Hoskins, B. J. and T. Ambrizzi, Rossby wave propagation on a realistic longitudinally varying flow, J. Atmos. Sci., 1993, 50, 1661-1671 CrossrefGoogle Scholar

  • [20] Hurrell J. W., Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 1995, 269, 676-679Google Scholar

  • [21] Kalnay E., and Coauthors, The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 1996, 77, 437-471 doi:CrossrefGoogle Scholar

  • [22] Kitsios V., Frederiksen J. S., Zidikheri M. J., Subgrid model with scaling laws for atmospheric simulations J. Atmos. Sci., 2012, 69 1427-1445Web of ScienceGoogle Scholar

  • [23] Kobayashi, S., Ota Y., Harada Y., Ebita A., Moriya M. , Onoda H., Onogi K., Kamahori H., Kobayashi C., Endo H., Miyaoka K., and Takahashi K., The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteor. Soc. Japan, 2015, 93(1), 5-48Google Scholar

  • [24] Kraichnan R. H., Inertial Ranges in Two-Dimensional Turbulence Phys. Fluids, 1967, 10(7), 1417-1423CrossrefGoogle Scholar

  • [25] Lau K.-M., Shey P.-J., Kang I.-S. , Multiscale low-frequency circulation modes in the global atmosphere, J. Atmos. Sci., 1994, 51, 1169-1193Google Scholar

  • [26] Legras B. and Ghil M., Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci., 1985, 42(5), 432-471Google Scholar

  • [27] Leith C. E., Nonlinear normal mode initialization and quasigeostrophic theory, J. Atmos. Sci., 1980, 37 958-968Google Scholar

  • [28] Lorenz E., Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile, J. Meteor., 1951 8, 52-59Google Scholar

  • [29] Lorenz E. N., Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci., 1980, 37 1685-1699Google Scholar

  • [30] Majda A. J., Franzke C. L., Fischer A., Crommelin D. T., Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model, Proc. Natl. Acad. Sci. USA, 2006, 103, 8309-8314Google Scholar

  • [31] Majda, A. J., Gershgorin B., Crommelin D., Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA, 2009, 106, 3649-3653Google Scholar

  • [32] Metzner P., Putzig L., Horenko I., Analysis of persistent nonstationary time series and applications, Comm. Appl. Math. Comp. Sci., 2012, 7(2), 175-229Google Scholar

  • [33] Mo K. C., Higgins R. W., The Pacific-South American Modes and Tropical Convection during the Southern Hemisphere Winter, J. Atmos. Sci., 1988, 126, 1581-1596Google Scholar

  • [34] Nadiga B. T., O’Kane T. J., Low-Frequency Regime Transitions and Predictability of Regimes in a Barotropic Model, 2017, Chapt. 5, 136-159, Nonlinear and Stochastic Climate Dynamics, Eds Franzke, C. L. E. and T. J. O’Kane, 483pp, Cambridge University Press, Cambridge UKGoogle Scholar

  • [35] O’Kane T. J., Frederiksen J. S., Statistical dynamical subgrid-scale parameterizations for geophysical flows, Phys. Scr., 2008, 132 014033Web of ScienceGoogle Scholar

  • [36] O’Kane T. J., Monselesan D. P., Risbey J. S., A multiscale re-examination of the Pacific South American pattern, Mon. Rev. Rev., 2017, 145(3), 379-402Google Scholar

  • [37] O’Kane T. J., Risbey J. S., Franzke C. L. E., Horenko I., Monselesan D. P., Changes in the meta-stability of the mid-latitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split flow blocking indices as diagnostic tools, J. Atmos. Sci., 2013, 70(3), 824-842Google Scholar

  • [38] O’Kane T.J., Risbey J. S., Monselesan D. P., Horenko I., Franzke C. L. E., On the dynamics of persistent states and their secular trends in the waveguides of the Southern Heisphere troposphere, Cli. Dynamics, 2015, DOI 10.1007/s00382-015-2786-8CrossrefGoogle Scholar

  • [39] Polvani L. M.,Waugh D.W., Correa G. J. P., Son S.W., Stratospheric ozone depletion: Themain driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere, J. Clim. 2011, 24, 795-812Web of ScienceGoogle Scholar

  • [40] Phillips N. A. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus, 1954, 6(x), 273-286CrossrefGoogle Scholar

  • [41] Risbey J. S., O’Kane T. J., Monselesan D. P., Franzke C. L. E., Horenko I., Metastability of Northern Hemisphere teleconnection modes, J. Atmos. Sci., 2015, 72(1), 35-54Google Scholar

  • [42] Roscoe H. K., Haigh J. D., Influences of ozone depletion, the solar cycle and the QBO on the Southern Annular Mode Q. J. R. Meteorol. Soc, 2007, 133, 1855-1864Web of ScienceGoogle Scholar

  • [43] Thompson D.W., andWallace J. M., The Arctic Oscillation signature in thewintertime geopotential height and temperature fields. Geophys. Res. Lett., 1988, 25, 1297-1300CrossrefGoogle Scholar

  • [44] Thompson, D.W., Wallace J. M., Annular modes in the extratropical circulation. Part I: Month to month variability J. Climate, 2000, textit13, 1000-1016Google Scholar

  • [45] Stolle, J., Lovejoy S., Schertzer D„ The temporal cascade structure of reanalyses and global circulation models Q. J. R. Meteorol. Soc. 2012, DOI:10.1002/qj.1916Web of ScienceCrossrefGoogle Scholar

  • [46] Vallis G., Atmospheric and Oceanic Fluid Dynamics, 2010, 745pp. Cambridge University Press, Cambridge UKGoogle Scholar

  • [47] Wallace J. M., Gutzler D. S., Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 1981, 109, 784-812Google Scholar

  • [48] Zidikheri, M. J., Frederiksen, J. S., Stochastic modelling of unresolved eddy fluxes. Geophys. Astrophys. Fluid Dyn., 2010, 104, 323-348.Web of ScienceGoogle Scholar

About the article

Received: 2016-10-11

Accepted: 2017-02-10

Published Online: 2017-03-04

Published in Print: 2017-01-01

Citation Information: Mathematics of Climate and Weather Forecasting, Volume 3, Issue 1, Pages 1–27, ISSN (Online) 2353-6438, DOI: https://doi.org/10.1515/mcwf-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

James S. Risbey, Terence J. O'Kane, Didier P. Monselesan, Christian L. E. Franzke, and Illia Horenko
Journal of Geophysical Research: Atmospheres, 2018

Comments (0)

Please log in or register to comment.
Log in