Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Climate and Weather Forecasting

Ed. by Khouider, Boualem

Open Access
See all formats and pricing
More options …

Local Interactions by Diffusion between Mixed-Phase Hydrometeors: Insights from Model Simulations

Manuel Baumgartner
  • Corresponding author
  • Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany; now at Zentrum für Datenverarbeitung, Johannes Gutenberg University, Mainz, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Spichtinger
Published Online: 2017-11-24 | DOI: https://doi.org/10.1515/mcwf-2017-0004


Diffusion ofwater vapor is the dominant growth mechanism for smallwater droplets and ice crystals in clouds. In current cloud models, Maxwell’s theory is used for describing growth of cloud particles. In this approach the local interaction between particles is neglected; the particles can only grow due to changes in environmental conditions, which are assumed as boundary conditions at infinity. This assumption is meaningful if the particles are well separated and far away from each other. However, turbulent motions might change the distances between cloud particles and thus these particles are no longer well separated leading to direct local interactions. In this study we develop a reference model for investigating the direct interaction of cloud particles in mixed-phase clouds as driven by diffusion processes. The model is numerically integrated using finite elements. Additionally, we develop a numerical method based on generalized finite elements for including moving particles and their direct interactions with respect to diffusional growth and evaporation. Several idealized simulations are carried out for investigating direct interactions of liquid droplets and ice particles in a mixed-phase cloud. The results show that local interaction between cloud particles might enhance life times of droplets and ice particles and thus lead to changes in mixed-phase cloud life time and properties.

Keywords: Diffusional Growth; Wegener-Bergeron-Findeisen process; Generalized Finite Element Method


  • [1] Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus Mathematique, 341(11):683-688, 2005. ISSN 1631-073X. http://dx.doi.org/10.1016/j.crma.2005.09.046. URL http://www.sciencedirect.com/science/article/pii/S1631073X05004504.CrossrefGoogle Scholar

  • [2] Ivo Babuška, Uday Banerjee, and John E. Osborn. Generalized finite element methods - main ideas, results and perspective. International Journal of Computational Methods, 1(1):67-103, 2004. 10.1142/S0219876204000083. URL http://www.worldscientific.com/doi/abs/10.1142/S0219876204000083.Google Scholar

  • [3] Manuel Baumgartner and Peter Spichtinger. Diffusional growth of cloud particles: existence and uniqueness of solutions. Theoretical and Computational Fluid Dynamics, 2017. ISSN 1432-2250. 10.1007/s00162-017-0437-x. URL https://doi.org/10.1007/s00162-017-0437-x.Google Scholar

  • [4] Manuel Baumgartner and Peter Spichtinger. Towards a bulk approach of local interactions of hydrometeors. Atmospheric Chemistry and Physics, 2017. Under review. Google Scholar

  • [5] Tor Bergeron. The problem of artificial control of rainfall on the globe. Tellus, 1(1):32-43, 1949. ISSN 2153-3490. 10.1111/j.2153-3490.1949.tb01926.x. URL http://dx.doi.org/10.1111/j.2153-3490.1949.tb01926.x.Google Scholar

  • [6] Nesvit E. Castellano and Eldo E. Avila. Vapour density field of a population of cloud droplets. Journal of Atmospheric and Solar-Terrestrial Physics, 73(16):2423-2428, 2011. ISSN 1364-6826. http://dx.doi.org/10.1016/j.jastp.2011.08.013. URL http://www.sciencedirect.com/science/article/pii/S1364682611002501.CrossrefGoogle Scholar

  • [7] Nesvit E. Castellano, Eldo E. Avila, and Clive P.R. Saunders. Theoretical model of the bergeron-findeisen mechanism of ice crystal growth in clouds. Atmospheric Environment, 38(39):6751 - 6761, 2004. ISSN 1352-2310. http://dx.doi.org/10.1016/j.atmosenv.2004.09.003. URL http://www.sciencedirect.com/science/article/pii/S1352231004008416.CrossrefGoogle Scholar

  • [8] Antonio Celani, G. Falkovich, Andrea Mazzino, and A. Seminara. Droplet condensation in turbulent flows. EPL (Europhysics Letters), 70(6):775, 2005. URL http://stacks.iop.org/0295-5075/70/i=6/a=775. Google Scholar

  • [9] Antonio Celani, Andrea Mazzino, A. Seminara, and Marco Tizzi. Droplet condensation in two-dimensional bolgiano turbulence. Journal of Turbulence, 8:N17, 2007. 10.1080/14685240601105716. URL http://dx.doi.org/10.1080/14685240601105716.Google Scholar

  • [10] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, 2002. 10.1137/1.9780898719208. URL http://epubs.siam.org/doi/abs/10.1137/1.9780898719208. Google Scholar

  • [11] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. Proceedings of the National Academy of Sciences of the United States of America, 38(3):235-243, 1952.CrossrefGoogle Scholar

  • [12] E.J. Davis. A history and state-of-the-art of accommodation coeficients. Atmospheric Research, 82(3-4):561 - 578, 2006. ISSN 0169-8095. http://dx.doi.org/10.1016/j.atmosres.2006.02.013. URL http://www.sciencedirect.com/science/article/pii/S0169809506000779.CrossrefGoogle Scholar

  • [13] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, 1998.Google Scholar

  • [14] W. Findeisen. Die kolloidmeteorologischen vorgänge bei der niederschlagsbildung. Meteor. Z, 55:121-133, 1938.Google Scholar

  • [15] Wojciech W. Grabowski and Lian-Ping Wang. Growth of cloud droplets in a turbulent environment. Annual Review of Fluid Mechanics, 45(1):293-324, 2013. 10.1146/annurev-fluid-011212-140750. URL http://dx.doi.org/10.1146/annurev-fluid-011212-140750.Google Scholar

  • [16] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg, second revised edition edition, 1996. ISBN 978-3-642-05220-0. 10.1007/978-3-642-05221-7.Google Scholar

  • [17] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg, second edition edition, 2006. ISBN 978-3-540-30663-4.Google Scholar

  • [18] Alexei V. Korolev. Limitations of the wegener-bergeron-findeisen mechanism in the evolution of mixed-phase clouds. Journal of the Atmospheric Sciences, 64(9):3372-3375, 2007. 10.1175/JAS4035.1. URL http://dx.doi.org/10.1175/JAS4035.1.Google Scholar

  • [19] Alexander B. Kostinski and Raymond A. Shaw. Scale-dependent droplet clustering in turbulent clouds. Journal of Fluid Mechanics, 434:389-398, 5 2001. ISSN 1469-7645. 10.1017/S0022112001004001. URL http://journals.cambridge.org/article_S0022112001004001.Google Scholar

  • [20] Dennis Lamb and Johannes Verlinde. Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, 2011. ISBN 978-0-521-89910-9.Google Scholar

  • [21] J. S. Langer. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys., 52:1-28, Jan 1980. 10.1103/RevMod-Phys.52.1. URL http://link.aps.org/doi/10.1103/RevModPhys.52.1.Google Scholar

  • [22] Kenneth G Libbrecht. The physics of snow crystals. Reports on Progress in Physics, 68(4):855-895, 2005. URL http: //stacks.iop.org/0034-4885/68/i=4/a=R03.Google Scholar

  • [23] James Clerk Maxwell. Diffusion. reprinted in W.D. Niven (Ed.), The Scientific Papers of James Clerk Maxwell, 2:625-645, 1877.Google Scholar

  • [24] O. A. Oleinik, M. Primicerio, and E. V. Radkevich. Stefan-like problems. Meccanica, 28(2):129-143, 1993. ISSN 1572-9648. 10.1007/BF01020325. URL http://dx.doi.org/10.1007/BF01020325.Google Scholar

  • [25] Hans R. Pruppacher and K. V. Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96(408):247-256, 1970. ISSN 1477-870X. 10.1002/qj.49709640807. URL http://dx.doi.org/10.1002/qj.49709640807.Google Scholar

  • [26] R.R. Rogers and M.K. Yau. A Short Course in Cloud Physics. International Series in Natural Philosophy. Butterworth-Heinemann, third edition edition, 1989. ISBN 0-7506-3215-1.Google Scholar

  • [27] Raymond A. Shaw. Supersaturation intermittency in turbulent clouds. Journal of the Atmospheric Sciences, 57(20): 3452-3456, 2000. 10.1175/1520-0469(2000)057<3452:SIITC>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(2000)057<3452:SIITC>2.0.CO;2.Google Scholar

  • [28] Raymond A. Shaw, Walter C. Reade, Lance R. Collins, and Johannes Verlinde. Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. Journal of the Atmospheric Sciences, 55(11): 1965-1976, 1998. 10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2.Google Scholar

  • [29] Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41(2):11:1-11:36, 2015. ISSN 0098-3500. 10.1145/2629697. URL http://doi.acm.org/10.1145/2629697.CrossrefGoogle Scholar

  • [30] P. A. Vaillancourt, M. K. Yau, and Wojciech W. Grabowski. Microscopic approach to cloud droplet growth by condensation. part i: Model description and results without turbulence. Journal of the Atmospheric Sciences, 58(14):1945-1964, 2001. 10.1175/1520-0469(2001)058<1945:MATCDG>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(2001)058<1945:MATCDG>2.0.CO;2.Google Scholar

  • [31] P. A. Vaillancourt, M. K. Yau, P. Bartello, and Wojciech W. Grabowski. Microscopic approach to cloud droplet growth by condensation. part ii: Turbulence, clustering, and condensational growth. Journal of the Atmospheric Sciences, 59(24): 3421-3435, 2002. 10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.Google Scholar

  • [32] Pao K. Wang. Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, Cambridge, 2013. ISBN 978-1-107-00556-3.Google Scholar

  • [33] Alfred Wegener. Thermodynamik der Atmosphäre. J. A. Barth, Leipzig, 1911.Google Scholar

  • [34] A.M. Wood, W. Hwang, and J.K. Eaton. Preferential concentration of particles in homogeneous and isotropic turbulence. International Journal of Multiphase Flow, 31(10-11):1220-1230, 2005. ISSN 0301-9322. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.07.001. URL http://www.sciencedirect.com/science/article/pii/S0301932205000959.CrossrefGoogle Scholar

  • [35] Nicholas Zabaras, Baskar Ganapathysubramanian, and Lijian Tan. Modelling dendritic solidification with melt convection using the extended finite element method. Journal of Computational Physics, 218(1):200 - 227, 2006. ISSN 0021-9991. http://dx.doi.org/10.1016/j.jcp.2006.02.002. URL http://www.sciencedirect.com/science/article/pii/S0021999106000787.Google Scholar

About the article

Received: 2017-05-15

Accepted: 2017-10-31

Published Online: 2017-11-24

Published in Print: 2017-11-27

Citation Information: Mathematics of Climate and Weather Forecasting, Volume 3, Issue 1, Pages 64–89, ISSN (Online) 2353-6438, DOI: https://doi.org/10.1515/mcwf-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Manuel Baumgartner and Peter Spichtinger
Atmospheric Chemistry and Physics, 2018, Volume 18, Number 4, Page 2525

Comments (0)

Please log in or register to comment.
Log in