Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Climate and Weather Forecasting

Ed. by Khouider, Boualem

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-6438
See all formats and pricing
More options …

Data Assimilation in a Multi-Scale Model

Guannan Hu
  • Corresponding author
  • School of Integrated Climate System Science, University of Hamburg, Hamburg, Germany and Meteorological Institute, University of Hamburg, Hamburg, Germany and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian L. E. Franzke
  • Meteorological Institute, University of Hamburg, Hamburg, Germany and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/mcwf-2017-0006

Abstract

Data assimilation for multi-scale models is an important contemporary research topic. Especially the role of unresolved scales and model error in data assimilation needs to be systematically addressed. Here we examine these issues using the Ensemble Kalman filter (EnKF) with the two-level Lorenz-96 model as a conceptual prototype model of the multi-scale climate system. We use stochastic parameterization schemes to mitigate the model errors from the unresolved scales. Our results indicate that a third-order autoregressive process performs better than a first-order autoregressive process in the stochastic parameterization schemes, especially for the system with a large time-scale separation.Model errors can also arise from imprecise model parameters. We find that the accuracy of the analysis (an optimal estimate of a model state) is linearly correlated to the forcing error in the Lorenz-96 model. Furthermore, we propose novel observation strategies to deal with the fact that the dimension of the observations is much smaller than the model states. We also propose a new analog method to increase the size of the ensemble when its size is too small.

References

  • [1] J. L. Anderson, An Ensemble Adjustment Kalman Filter for Data Assimilation, Monthly Weather Review, 129 (2001), pp. 2884-2903.Google Scholar

  • [2] , An adaptive covariance inflation error correction algorithms for ensemble filters, Tellus, 59 (2007), pp. 210-224.Google Scholar

  • [3] J. L. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts , Mon. Weather Rev., 127 (1999), pp. 2741-2758.Google Scholar

  • [4] J. Berner,U.Achatz, L. Batte, L. Bengtsson, A. d. l. Camara, H. M. Christensen, M. Colangeli,D. R. Coleman,D. Crom- melin, S. I. Dolaptchiev, et al., Stochastic parameterization: Toward a new view of weather and climate models, Bulletin of the American Meteorological Society, 98 (2017), pp. 565-588.CrossrefGoogle Scholar

  • [5] T. Berry and J. Harlim, Linear theory for filtering nonlinear multiscale systems with model error, Proc. Roy. Soc. London, 470A (2014).Google Scholar

  • [6] M. Bonavita, L. Isaksen, and E. Holm, On the use of EDA background error variances in the ECMWF 4D-Var, Quarterly Journal of the Royal Meteorological Society, 138 (2012), pp. 1540-1559.Google Scholar

  • [7] M. Bonavita, L. Raynaud, and L. Isaksen, Estimating background-error variances in the ECMWF Ensemble of Data Assimilations system: some effects of ensemble size and day-to-day variability, Quarterly Journal of the Royal Meteorological Society, 137 (2011), pp. 423-434.Google Scholar

  • [8] H. Christensen, I. Moroz, and T. Palmer, Simulating weather regimes: impact of stochastic and perturbed parameter schemes in a simple atmospheric model, Clim Dyn (2015), 44 (2015), pp. 2195-2214.Google Scholar

  • [9] A. Clayton, A. Lorenc, and D. Barker, Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office, Quarterly Journal of the Royal Meteorological Society, 139 (2013), pp. 1445-1461.Google Scholar

  • [10] P. Courtier, J.-N. Thepaut, and A. Hollingsworth, A strategy for operational implementation of 4D-VAR, using an incremental approach, Quarterly Journal of the Royal Meteorological Society, 120 (1994), pp. 1367-1387.Google Scholar

  • [11] D. Crommelin and E. Vanden-Eijnden, Subgrid-scale parameterization with conditional Markov chains, J. Atmos. Sci., 65 (2008), pp. 2661-2675.CrossrefGoogle Scholar

  • [12] A. Dalcher and E. Kalnay, Error growth and predictability in operational ECMWF forecasts, Tellus, 39A (1987), pp. 474-491.CrossrefGoogle Scholar

  • [13] R. Daley, Atmospheric data assimilation, Journal of the Meteorological Society of Japan, 75 (1997), pp. 319-329.CrossrefGoogle Scholar

  • [14] V. Echevin, P. Mey, and G. Evensen, Horizontal and vertical structure of the representer functions for sea surface measurements in a coastal circulation model, J. Phys. Oceanogr., 30 (2000), pp. 2627-2635.CrossrefGoogle Scholar

  • [15] M. Ehrendorfer and J. Tribbia, Optimal Prediction of Forecast Error Covariances through Singular Vectors, J. Atmos. Sci., 54 (1997), pp. 286-313.CrossrefGoogle Scholar

  • [16] G. Evensen, Inverse Methods and data assimilation in nonlinear ocean models, Physica (D), 77 (1994a), pp. 108-129.Google Scholar

  • [17] , Sequential data assimilation with a nonlinear quasi-geostrophic model usingMonte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99 (1994b), pp. 10143-10162.Google Scholar

  • [18] , Advanced data assimilation for strongly nonlinear dynamics, Monthly Weather Review, 125 (1997), pp. 1342-1354.Google Scholar

  • [19] , The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), pp. 343-367.Google Scholar

  • [20] I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model, Journal of Computational Physics, 200 (2004), pp. 605-638.Google Scholar

  • [21] M. Fisher, M. Leutbecher, and G. Kelly, On the equivalence between Kalman smoothing and weak-constraint fourdimensional variational data assimilation, Quarterly Journal of the Royal Meteorological Society, 131 (2005), pp. 3235-3246.Google Scholar

  • [22] C. L. E. Franzke, A. J.Majda, and E. Vanden-Eijnden, Low-order stochastic mode reduction for a realistic barotropic model climate, J. Atmos. Sci., 62 (2005), pp. 1722-1745.CrossrefGoogle Scholar

  • [23] C. L. E. Franzke, T. O’Kane, J. Berner, P. Williams, and V. Lucarini, Stochastic climate theory and modelling, WIREs Climate Change, 6 (2015), pp. 63-78. [24] G. Gaspari and S. E. Cohn, Construction of correlation functions in two and three dimensions, Quart. J. Roy. Meteor. Soc., 125 (1999), pp. 723-757.Google Scholar

  • [25] M. Ghil and P.Malanotte-Rizzoli, Data assimilation inmeteorology and oceanography, Adv. Geophys., 33 (1991), pp. 141-266.Google Scholar

  • [26] G. Gottwald, D. Crommelin, and C. L. E. Franzke, Stochastic climate theory, in Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. O’Kane, eds., Cambridge University Press, Cambridge, 2017.Google Scholar

  • [27] I. Grooms, Y. Lee, and A. J. Majda, Ensemble Filtering and Low-Resolution Model Error: Covariance Inflation, Stochastic Parameterization, and Model Numerics, Mon. Weather Rev., 143 (2015), pp. 3912-3924.Google Scholar

  • [28] T. M. Hamil, J. S. Whitaker, and C. Snyder, Distance-dependent filtering of back-ground error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129 (2001).Google Scholar

  • [29] J. Harlim,Model Error in Data Assimilation, in Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, eds., Cambridge University Press, Cambridge, 2017, ch. 10, pp. 276-317.Google Scholar

  • [30] V. Haugen and G. Evensen, Assimilation of SLA and SST data into an OGCM for the Indian Ocean, Ocean Dynamics, 52 (2002), pp. 133-151.CrossrefGoogle Scholar

  • [31] P. Houtekamer and H. Mitchell, Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, 126 (1998), pp. 796-811.Google Scholar

  • [32] B. Hunt, E. Kostelich, and I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter, Physica, 230 (2007), pp. 112-126.Google Scholar

  • [33] H. Jarvinen, E. Andersson, and F. Bouttier, Variational assimilation of time sequences of surface observation with serially correlated errors, Tellus, 51A (1999), pp. 469-488.CrossrefGoogle Scholar

  • [34] R. Kalman, A new approach to linear filtering and prediction problem, Trans. AMSE J. Basic Eng., 82D (1960), pp. 35-45.Google Scholar

  • [35] R. Kalman and R. Bucy, New results in linear filtering and prediction theory, Trans. AMSE J. Basic Eng., 83D (1961), pp. 95-108.Google Scholar

  • [36] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ. Press, 2002.Google Scholar

  • [37] E. Kalnay, H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-poy, 4-D-Var or ensemble Kalman filter?, Tellus, 59A (2007), pp. 758-773.Google Scholar

  • [38] C. Keppenne and M. Rienecker, Assimilation of temperature into an isopycnal ocean general circulation model using a parallel Ensemble Kalman Filter, J. Mar. Sys., 40-41 (2003), pp. 363-380.Google Scholar

  • [39] A. Lorenc, Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, 112 (1986), pp. 1177-1194.Google Scholar

  • [40] , The potential of the ensemble Kalman filter for NWP-a comparison with 4D-Var, Quarterly Journal of the Royal Meteorological Society, 129 (2003), pp. 3183-3203.Google Scholar

  • [41] E. Lorenz, Atmospheric predictability experiments with a large numerical model, Tellus, 34 (1982), pp. 505-513.Google Scholar

  • [42] , Predictability - a problem partly solved, in In: Proceedings of seminar on predictability, vol. 1, Shinfield Park,Reading, United Kingdom, 4-8 September 1995, In: Proceedings of seminar on predictability, ECMWF, pp. 1-18.Google Scholar

  • [43] , Designing chaotic models, J. Atmos. Sci., 62 (2005), pp. 1574-1587.Google Scholar

  • [44] , Regimes in simple systems, J. Atmos. Sci., 63 (2006), pp. 2056-2073.Google Scholar

  • [45] E. Lorenz and K. Emanuel, Optimal sites for supplementary weather observations: simulation with a small model, J. Atmos. Sci., 55 (1998), pp. 399-414.CrossrefGoogle Scholar

  • [46] H. Madsen and R. Canizares, Comparison of Extended and Ensemble Kalman filters for data assimilation in coastal area modelling, Int. J. Numer. Meth. Fluids, 31 (1999), pp. 961-981.Google Scholar

  • [47] A. Majda, C. L. E. Franzke, and D. Crommelin, Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 3649-3653.Google Scholar

  • [48] A. J. Majda, C. L. E. Franzke, and B. Khouider, An applied mathematics perspective on stochastic modelling for climate, Phil. Trans. R. Soc. A, 366 (2008), pp. 2429-2455.Google Scholar

  • [49] A. J. Majda, I. Timofeyev, and E. V. Eijnden, Models for stochastic climate prediction, Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 14687-14691.Google Scholar

  • [50] Z. Meng and F. Zhang, Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model experiments., Mon. Wea. Rev., 135 (2007), pp. 1403-1423.Google Scholar

  • [51] R. N. Miller, M. Ghil, and F. Gauthiez, Advanced Data Assimilation in Strongly Nonlinear Dynamical Systems, J. Atmos. Sci., 51 (1994), pp. 1037-1056.Google Scholar

  • [52] H. Mitchell, P. Houtekamer, and G. Pellerin, Ensemble size, and model-error representation in an Ensemble Kalman Filter, Monthly Weather Review, 130 (2002), pp. 2791-2808.Google Scholar

  • [53] L. Mitchell and A. Carrassi, Accounting for model error due to unresolved scales within ensemble Kalman filtering, Quart. J. Roy. Meteor. Soc., 141 (2015), pp. 1417-1428.Google Scholar

  • [54] T. N. Palmer, A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models, Quart. J. Roy. Meteor. Soc., 127 (2001), pp. 279-304.Google Scholar

  • [55] D. T. Pham, Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Mon. Weather Rev., 129 (2001), pp. 1194-1207. [56] Y. Sasaki, Numerical variational analysis with weak constraint and application to surface analysis of severe storm gust, Monthly Weather Review, 98 (1970), pp. 899-910.Google Scholar

  • [57] A. J. Simmons, R. Mureau, and T. Petroliagis, Error growth estimates of predictability from the ECMWF forecasting system, Quarterly Journal of the Royal Meteorological Society, 121 (1995), pp. 1739-1771.Google Scholar

  • [58] R. Tardif, G. Hakim, and C. Snyder, Coupled atmosphere-ocean data assimilation experiments with a low-order model and CMIP5 model data, Clim. Dyn., 45 (2015), pp. 1415-1427.Google Scholar

  • [59] Z. Toth and E. Kalnay, Ensemble forecasting at NMC: the generation of perturbations, Bull. Amer. Meteor. Soc., 74 (1993), pp. 2317-2330.Google Scholar

  • [60] M. van Loon, P. Builtjes, and A. Segers, Data assimilation of ozone in the atmospheric transport chemistry model LOTUS, Environ. Modelling Software, 15 (2000), pp. 603-609.Google Scholar

  • [61] G. Walker, On Periodicity in Series of Related Terms, Proceedings of the Royal Society of London, 131 (1931), pp. 518-532.Google Scholar

  • [62] X.Wang,D. Parrish,D. Kleist, and J.Whitaker, GSI 3DVar-Based Ensemble-Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single Resolution Experiments, Monthly Weather Review, 141 (2013), pp. 4098-4117.Google Scholar

  • [63] J. Whitaker, G. Compo, and J.-N. Thepaut, A Comparison of Variational and Ensemble-Based Data Assimilation Systems for Reanalysis of Sparse Observations, Monthly Weather Review, 137 (2009), pp. 1991-1999.Google Scholar

  • [64] J. Whitaker and T. Hamill, Ensemble Data Assimilation without Perturbed Observations, Monthly Weather Review, 130 (2002), pp. 1913-1924.Google Scholar

  • [65] D. Wilks, Effiects of stochastic parameterizations in the Lorenz ’96 model, Quart. J. Roy. Meteor. Soc., 131 (2005), pp. 389-407.Google Scholar

  • [66] G. U. Yule, On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers, Philosophical Transactions of the Royal Society of London, 226 (1927), pp. 267-298Google Scholar

About the article

Received: 2017-06-28

Accepted: 2017-12-23

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Mathematics of Climate and Weather Forecasting, Volume 3, Issue 1, Pages 118–139, ISSN (Online) 2353-6438, DOI: https://doi.org/10.1515/mcwf-2017-0006.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in