Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mathematics of Climate and Weather Forecasting

Ed. by Khouider, Boualem

Open Access
See all formats and pricing
More options …

Intercomparison of Warm-Rain Bulk Microphysics Schemes using Asymptotics

Juliane Rosemeier / Manuel Baumgartner / Peter Spichtinger
Published Online: 2018-12-31 | DOI: https://doi.org/10.1515/mcwf-2018-0005


Clouds are important components of the atmosphere. As it is usually not possible to treat them as ensembles of huge numbers of particles, parameterizations on the basis of averaged quantities (mass and/or number concentration) must be derived. Since no first-principles derivations of such averaged schemes are available today, many alternative approximating schemes of cloud processes exist. Most of these come in the form of nonlinear differential equations. It is unclear whether these different cloud schemes behave similarly under controlled local conditions, and much less so when they are embedded dynamically in a full atmospheric flow model. We use mathematical methods from the theory of dynamical systems and asymptotic analysis to compare two operational cloud schemes and one research scheme qualitatively in a simplified context in which the moist dynamics is reduced to a system of ODEs. It turns out that these schemes behave qualitatively differently on shorter time scales, whereas at least their long time behavior is similar under certain conditions. These results show that the quality of computational forecasts of moist atmospheric flows will generally depend strongly on the formulation of the cloud schemes used.

Keywords: Cloud Model; Predictability; Asymptotic Analysis


  • [1] Tomio Asai. A numerical study of the air-mass transformation over the japan sea in winter. Journal of the Meteorological Society of Japan. Ser. II, 43(1):1-15, 1965.CrossrefGoogle Scholar

  • [2] R. A. Barrio, C. Varea, J. L. Aragón, and P. K. Maini. A two-dimensional numerical study of spatial pattern formation in interacting turing systems. Bulletin of Mathematical Biology, 61(3):483-505, 1999. ISSN 1522-9602. 10.1006/bulm.1998.0093. URL http://dx.doi.org/10.1006/bulm.1998.0093.CrossrefGoogle Scholar

  • [3] Klaus D. Beheng. The Evolution of Raindrop Spectra: A Review of Microphysical Essentials, pages 29-48. American Geophysical Union, 2010. ISBN 9781118670231. 10.1029/2010GM000957. URL http://dx.doi.org/10.1029/2010GM000957.Google Scholar

  • [4] George H. Bryan and J. Michael Fritsch. A benchmark simulation for moist nonhydrostatic numerical models. Monthly Weather Review, 130(12):2917-2928, 2002. 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.Google Scholar

  • [5] Mark C Cross and Pierre C Hohenberg. Pattern formation outside of equilibrium. Reviews of Modern Physics, 65:851, 1993.Google Scholar

  • [6] G. Doms, J. Förstner, E. Heise, H.-J. Herzog, D. Mironow, M. Raschendorfer, T. Reinhardt, B. Ritter, R. Schrodin, J.-P. Schulz, and G. Vogel. A description of the nonhydrostatic regional cosmo model. part ii: Physical parameterization, 2011.Google Scholar

  • [7] ECMWF. Ifs documentation - cy43r3. part iv: Physical processes, 2017.Google Scholar

  • [8] M.W. Hirsch, S.Smale, and R. L. Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic Press, Waltham, USA, 3rd edition, 2013.Google Scholar

  • [9] Sabine Hittmeir and Rupert Klein. Asymptotics for moist deep convection i: refined scalings and self-sustaining updrafts. Theoretical and Computational Fluid Dynamics, 2017. ISSN 1432-2250. 10.1007/s00162-017-0443-z. URL https://doi.org/10.1007/s00162-017-0443-z.Google Scholar

  • [10] Mark H. Holmes. Introduction to Perturbation Methods, volume 20 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition edition, 2013. ISBN 978-1-4614-5476-2. 10.1007/978-1-4614-5477-9.Google Scholar

  • [11] Edwin Kessler. On the Distribution and Continuity of Water Substance in Atmospheric Circulations, pages 1-84. American Meteorological Society, Boston, MA, 1969. ISBN 978-1-935704-36-2. 10.1007/978-1-935704-36-2_1. URL https://doi.org10.1007/978-1-935704-36-2_1.Google Scholar

  • [12] Marat Khairoutdinov and Ye_m Kogan. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Monthly Weather Review, 128(1):229-243, 2000. 10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.URL http://dx.doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.Google Scholar

  • [13] Rupert Klein and Andrew J. Majda. Systematic multiscale models for deep convection on mesoscales. Theoretical and Computational Fluid Dynamics, 20(5-6):525-551, 2006. 10.1007/s00162-006-0027-9.Google Scholar

  • [14] Rupert Klein, Stefan Vater, Eileen Paeschke, and Daniel Ruprecht. Multiple scales methods in meteorology. In Herbert Steinrück, editor, Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances, volume 523 of CISM Courses and Lectures. Springer-Verlag, Wien New York, 2010. ISBN 978-3-7091-0407-1.Google Scholar

  • [15] Yefim L. Kogan and William J. Martin. Parameterization of bulk condensation in numerical cloud models. Journal of the Atmospheric Sciences, 51(12):1728-1739, 1994. 10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2. URL http://dx.doiorg/10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2.Google Scholar

  • [16] Alexei V Korolev and Ilia P Mazin. Supersaturation of water vapor in clouds. journal of the atmospheric sciences, 60:2957- 2974, 2003.Google Scholar

  • [17] W. E. Langlois. A rapidly convergent procedure for computing large-scale condensation in a dynamical weather model. Tellus, 25(1):86-87, 1973. ISSN 2153-3490. 10.1111/j.2153-3490.1973.tb01598.x. URL http://dx.doi.org/10.1111/j.2153-3490.1973.tb01598.x.Google Scholar

  • [18] James Clerk Maxwell. Di_usion. reprinted in W.D. Niven (Ed.), The Scientific Papers of James Clerk Maxwell, 2:625-645, 1877.Google Scholar

  • [19] JE McDonald. The saturation adjustment in numerical modelling of fog. Journal of the Atmospheric Sciences, 20(5):476-478, 1963.CrossrefGoogle Scholar

  • [20] D. M. Murphy and T. Koop. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131(608):1539-1565, 2005. ISSN 1477-870X. 10.1256/qj.04.94. URL http://dx.doi.org/10.1256/qj.04.94.Google Scholar

  • [21] J. D. Murray. Mathematical biology. I. An introduction, volume 17 of Interdisciplinary Applied Mathematics. Springer, 2002.Google Scholar

  • [22] Naomi Oreskes, Kristin Shrader-Frechette, and Kenneth Belitz. Veri_cation, validation and con_rmation of numerical models in the earth sciences. Science, 263, 1994.Google Scholar

  • [23] Hans R. Pruppacher and James D. Klett. Microphysics of Clouds and Precipitation, volume 18 of Atmospheric and Oceanographic Sciences Library. Kluwer Academic Publishers, Dordrecht, 2010. ISBN 0-7923-4211-9.Google Scholar

  • [24] H.R. Pruppacher and R. Rasmussen. Wind-tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. Journal of the Atmospheric Sciences, 36(7):1255-1260, 1979. 10.1175/1520-0469(1979)036<1255:AWTIOT>2.0.CO;2.Google Scholar

  • [25] R.R. Rogers and M.K. Yau. A Short Course in Cloud Physics. International Series in Natural Philosophy. Butterworth- Heinemann, third edition edition, 1989. ISBN 0-7506-3215-1.Google Scholar

  • [26] Steven A. Rutledge and Peter V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. viii: A model for the “seeder-feeder” process in warm-frontal rainbands. Journal of the Atmospheric Sciences, 40(5):1185-1206, 1983. 10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2. URL http://dx.doi.org/10.11751520-0469(1983)040<1185:TMAMSA>2.0.CO;2.Google Scholar

  • [27] Axel Seifert and Klaus D. Beheng. A two-moment cloud microphysics parameterization for mixed-phase clouds. part 1: Model description. Meteorology and Atmospheric Physics, 92(1):45-66, 2006. ISSN 1436-5065. 10.1007/s00703-005-0112-4. URL http://dx.doi.org/10.1007/s00703-005-0112-4.Google Scholar

  • [28] Su-Tzai Soong and Yoshimitsu Ogura. A comparison between axisymmetric and slab-symmetric cumulus cloud models. Journal of the Atmospheric Sciences, 30(5):879-893, 1973. 10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2. URL http://dx.doi.org/10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2.Google Scholar

  • [29] P. Spichtinger and K. M. Gierens. Modelling of cirrus clouds - part 1a: Model description and validation. Atmospheric Chemistry and Physics, 9(2):685-706, 2009. 10.5194/acp-9-685-2009.Google Scholar

  • [30] AM Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series BBiological Sciences, 237(641):37-72, 1952. 10.1098/rstb.1952.0012.Google Scholar

  • [31] Ferdinand Verhulst. Nonlinear Differential Equations and Dynamical Systems. Universitext. Springer-Verlag, Berlin Heidelberg, second edition edition, 1996. ISBN 978-3-540-60934-6. 10.1007/987-3-642-61453-8.Google Scholar

  • [32] UlrikeWacker. Structural stability in cloud physics using parameterized microphysics. Beiträge zur Physik der Atmosphäre, 65(3):231 - 242, 1992.Google Scholar

  • [33] Man Kong Yau and Pauline M. Austin. A model for hydrometeor growth and evolution of raindrop size spectra in cumulus cells. Journal of the Atmospheric Sciences, 36(4):655-668, 1979. 10.1175/1520-0469(1979)036<0655:AMFHGA>2.0.CO;2.URL http://dx.doi.org/10.1175/1520-0469(1979)036<0655:AMFHGA>2.0.CO;2.Google Scholar

About the article

Received: 2018-08-28

Accepted: 2018-12-18

Published Online: 2018-12-31

Published in Print: 2018-12-01

Citation Information: Mathematics of Climate and Weather Forecasting, Volume 4, Issue 1, Pages 104–124, ISSN (Online) 2353-6438, DOI: https://doi.org/10.1515/mcwf-2018-0005.

Export Citation

© by Juliane Rosemeier, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in