Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …

Dual Quaternions as a Tool for Rigid Body Motion Analysis: A Tutorial with an Application to Biomechanics

Ettore Pennestrì
  • Dipartimento di Ingegneria Meccanica, Università Roma Tor Vergata via del Politecnico, 1, 00133 Roma, Italy
/ Pier Valentini
  • Dipartimento di Ingegneria Meccanica, Università Roma Tor Vergata via del Politecnico, 1, 00133 Roma, Italy
Published Online: 2010-10-18 | DOI: https://doi.org/10.2478/v10180-010-0010-2

Dual Quaternions as a Tool for Rigid Body Motion Analysis: A Tutorial with an Application to Biomechanics

Dual quaternions and dual quaternion interpolation are powerful mathematical tools for the spatial analysis of rigid body motions. In this paper, after a review of some basic results and formulas, it will be presented an attempt to use these tools for the the kinematic modeling of human joints. In particular, the kinematic parameters extracted from experimentally acquired data are compared with those theoretically computed from dual quaternions rigid body motion interpolation.

Kwaterniony dualne jako narzędzie analizy ruchu ciał sztywnych. Przykład zastosowań w biomechanice

Kwaterniony dualne i interpolacja z użyciem kwaternionów dualnych stanowią silne narzędzia matematycznye wykorzystywane analizy ruchu przestrzennego ciał sztywnych. W artykule przedstawiono przegląd podstawowych wzorów i wyników, a następnie zaprezentowano próbę użycia tych narzędzi do modelowania kinematyki stawów w ciele człowieka. W szczególności, parametry kinematyczne wyznaczone na podstawie danych eksperymentalnych porównano z wyliczonymi teoretycznie na podstawie interpolacji ruchu ciał sztywnych z użyciem kwaternionów dualnych.

Keywords: biomechanics; dual quaternion interpolation; human motion

  • M. Hiller, C. Woernle, A unified representation of spatial displacements. Mechanism and Machine Theory, 19, 477-486, 1984.Google Scholar

  • J.S. Dai, An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist. Mechanism and Machine Theory, 41, 41-52, 2006.Google Scholar

  • L. Chèze, and J. Dimnet, Three-Dimensional Analysis of Human Movement, chapter Modeling Human Body Motions by the Techniques Known to Robotics, 177-200. Human Kinetics, 1995.Google Scholar

  • V. M. Zatsiorsky, Kinematics of Human Motion, Human Kinetics, 1998.Google Scholar

  • M. McCarthy, Introduction to theoretical kinematics. The MIT Press, 1990.Google Scholar

  • B. Jüttler, Visualization of moving objects using dual quaternion curves. Computers & Graphics, 18(3), 315-326, 1994.CrossrefGoogle Scholar

  • A. McAulay, Octonions - A Development of Clifford's Bi-Quaternions. Cambridge University Press, 1898.Google Scholar

  • A. T. Yang, Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. PhD thesis, Columbia University, 1963.Google Scholar

  • E. Pennestrì, R. Stefanelli, Linear algebra and numerical algorithms using dual numbers. Multibody System Dynamics, 18, 323-344, 2007.Web of ScienceGoogle Scholar

  • E. Pennestrì, and P.P. Valentini, Linear dual algebra algorithms and their Application to Kinematics. In C.L. Bottasso, editor, Multibody Dynamics Computational Methods and Applications, Vol. 12, Springer Verlag, 2008.Google Scholar

  • K.R. Etzel, and J.M. McCarthy, Spatial motion interpolation in an image space of so(4). In Proceedings of The 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference, 96-DETC/MECH-1164, 1996.Google Scholar

  • L. Kavan, and S. Collins, and C. O'Sullivan, and J. Zara, Dual Quaternions for Rigid Transformation Blending. Technical Report TCD-CS-2006-46, The University of Dublin, Trinity College, 2006.Google Scholar

  • L. Kavan, and S. Collins, and Zara, and C. O'Sullivan, Geometric Skinning with Approximate Dual Quaternion Blending. ACM Transaction on Graphics, 27, 105, 2008.Web of ScienceGoogle Scholar

  • K.K. Teu, and W. Kim, Estimation of the axis of a screw motion from noisy data—A new method based on Plücker lines. Journal of Biomechanics, 39, 2857-2862, 2006.Google Scholar

  • A. Page, and V. Mata, and J.V. Hoyos, and R. Porcar, Experimental determination of instantaneous screw axis in human motion. Error analysis. Mechanism and Machine Theory Mechanism and Machine Theory, 42, 429-441, 2007.Web of ScienceGoogle Scholar

  • H. H. Cheng, Computation of dual numbers in the extended finite dual plane. In Proc. of the 1993 ASME Design Automation Conference, 73-80, Sept. 19-22, 1993.Google Scholar

  • H. H. Cheng, Programming with dual numbers and its applications in mechanisms design. Engineering with Computers, 10(4), 212-229, 1994.Google Scholar

  • K. Wohlhart, Motor Tensor Calculus. In J. P. Merlet and B. Ravani, editors, Computational Kinematics 93-102. Kluwer Academic Publishers, 1995.Google Scholar

About the article


Published Online: 2010-10-18

Published in Print: 2010-01-01


Citation Information: Archive of Mechanical Engineering, ISSN (Print) 0004-0738, DOI: https://doi.org/10.2478/v10180-010-0010-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in