Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …
Volume 58, Issue 3 (Jan 2011)

A Finite Element Implementation of Knowles Stored-Energy Function: Theory, Coding and Applications

Cyprian Suchocki
  • Institute of Mechanics and Printing, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-10-29 | DOI: https://doi.org/10.2478/v10180-011-0021-7

A Finite Element Implementation of Knowles Stored-Energy Function: Theory, Coding and Applications

This paper contains the full way of implementing a user-defined hyperelastic constitutive model into the finite element method (FEM) through defining an appropriate elasticity tensor. The Knowles stored-energy potential has been chosen to illustrate the implementation, as this particular potential function proved to be very effective in modeling nonlinear elasticity within moderate deformations. Thus, the Knowles stored-energy potential allows for appropriate modeling of thermoplastics, resins, polymeric composites and living tissues, such as bone for example. The decoupling of volumetric and isochoric behavior within a hyperelastic constitutive equation has been extensively discussed. An analytical elasticity tensor, corresponding to the Knowles stored-energy potential, has been derived. To the best of author's knowledge, this tensor has not been presented in the literature yet. The way of deriving analytical elasticity tensors for hyperelastic materials has been discussed in detail. The analytical elasticity tensor may be further used to develop visco-hyperelastic, nonlinear viscoelastic or viscoplastic constitutive models. A FORTRAN 77 code has been written in order to implement the Knowles hyperelastic model into a FEM system. The performance of the developed code is examined using an exemplary problem.

Wprowadzenie funkcji energii potencjalnej typu Knowlesa do systemu metody elementów skończonych: teoria, kodowanie i zastosowania

Praca przedstawia pełną drogę wprowadzania do systemu metody elementów skończonych (MES) równania konstytutywnego hipersprężystości zdefiniowanego przez użytkownika przy użyciu odpowiedniego tensora sztywności. Aby zilustrować metodykę wprowadzania równania konstytutywnego do MES posłużono się modelem materiału hipersprężystego typu Knowlesa, gdyż model ten dobrze opisuje nieliniową sprężystość w zakresie średnich deformacji. Stąd model Knowlesa pozwala na poprawny opis własności mechanicznych polimerów termoplastycznych, żywic, kompozytów polimerowych i niektórych tkanek biologicznych, jak np. tkanka kostna. Przedstawiono podział równania konstytutywnego na część izochoryczną i objętościową. Wyprowadzono analitycznie tensor sztywności odpowiadający modelowi Knowlesa. Tensor ten nie był dotąd prezentowany w literaturze. Omówiono szczegółowo sposób wyprowadzania analitycznych tensorów sztywności dla materiałów hipersprężystych. Wyznaczony tensor sztywności może dalej posłużyć do budowy równań konstytutywnych nieliniowej lepkosprężystości lub lepkoplastyczności. W celu wprowadzenia modelu do systemu MES napisany został program w języku FORTRAN 77. W pracy przedstawiono wyniki z prostej symulacji MES wykonanej z wykorzystaniem napisanego programu.

Keywords: elasticity tensor; tangent modulus tensor; material Jacobian; hyperelasticity; stored-energy potential; constitutive equation; finite element method

  • "ABAQUS Verification Manual", ABAQUS, Inc. Providence, 2008.Google Scholar

  • Bonet J., Wood R. D.: "Nonlinear continuum mechanics for finite element analysis", 1997, Cambridge University Press, Cambridge.Google Scholar

  • Bouchart V.: "Experimental study and micromechanical modeling of the behavior and damage of reinforced elastomers", Ph.D. thesis, University of Sciences and Technologies, 2008, Lille.Google Scholar

  • Bouvard J. L., Ward D. K., Hossain D., Marin E. B., Bammann D. J., Horstemeyer M. F.: "A general inelastic internal state variable model for amorphous glassy polymers", Acta Mechanica, 213, 2010, pp. 71-96.Web of ScienceGoogle Scholar

  • Ciambella J., Destrade M., Ogden R. W.: "On the ABAQUS FEA model of finite viscoelasticity", Rubber Chemistry and Technology, 82, 2, 2009, pp. 184-193.Web of ScienceCrossrefGoogle Scholar

  • Dettmar J.: "A finite element implementation of Mooney-Rivlin's strain energy function in Abaqus", Technical Report, University of Calgary, Department of Civil Engineering, 2000, Calgary.Google Scholar

  • Elleuch R., Taktak W.: "Viscoelastic Behavior of HDPE Polymer using Tensile and Compressive Loading", Journal of Materials Engineering and Performance, 15, 1, 2006, pp. 111-116.Google Scholar

  • Fung Y. C.: "Foundations of solid mechanics", 1969, PWN, Warsaw (in Polish).Google Scholar

  • Holzapfel G. A.: "Nonlinear solid mechanics", 2010 John Wiley & Sons Ltd., New York.Google Scholar

  • Jemioło S.: "A study on the hyperelastic properties of isotropic materials", Scientific Surveys Warsaw University of Technology, Building Engineering, 140, OW PW, 2002 Warsaw (in Polish).Google Scholar

  • Knowles J. K.: "The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids", International Journal of Fracture, 13, 1977, pp. 611-639.CrossrefGoogle Scholar

  • Knowles J. K.: "On the dissipation associated with equilibrium whocks in finite elasticity", Journal of Elasticity, 9, 1979, pp. 131-158.CrossrefGoogle Scholar

  • Knowles J. K., Sternberg E.: "Discontinous deformation gradients near the tip of a crack in finite anti-plane shear: an example", Journal of Elasticity, 10, 1980, pp. 81-110.CrossrefGoogle Scholar

  • Miehe Ch.: "Numerical computation of algorithmic (consistent) tangent moduli in larde-strain computational inelasticity", Computer methods in applied mechanics and engineering, 134, 1996, pp. 223-240.Google Scholar

  • Ogden R. W.: "Non-linear elastic deformations", 1997, Dover Publications, Inc., Mineola, New York.Google Scholar

  • Ogden R. W.: "Nonlinear Elasticity with Application to Material Modelling", 2003, Lecture Notes, 6, IPPT PAN, Warsaw.Google Scholar

  • Ostrowska-Maciejewska J.: "Mechanics of deformable bodies", 1994, PWN, Warsaw (in Polish).Google Scholar

  • Ostrowska-Maciejewska J.: "Foundations and applications of tensor calculus", 2007, IPPT PAN, Warsaw (in Polish).Google Scholar

  • Perzyna P.: "Theory of viscoplasticity", 1966, PWN, Warsaw (in Polish).Google Scholar

  • Sobieski W.: "GNU Fortran with elements of data visualization", 2008, W UWM, Olsztyn (in Polish).Google Scholar

  • Soares J. P.: "Constitutive modeling for biodegradable polymers for application in endovascular stents", 2008, Ph.D. thesis, Texas A&M University.Google Scholar

  • Soares J. P., Rajagopal K. R., Moore J. E. Jr.: "Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus", 2010, Biomechanics and Modeling in Mechanobiology, 9, pp. 177-186.Web of ScienceCrossrefGoogle Scholar

  • Stein E., Sagar G.: "Convergence behavior of 3D finite elements for Neo-Hookean material", 2008, Engineering Computations: International Journal for Computer-Aided-Engineering and Software, 25(3), pp. 220-232.CrossrefWeb of ScienceGoogle Scholar

  • Skalski K., Pawlikowski M., Suchocki C.: "Constitutive equations and functional adaptation of bone tissue", in R. Będziński ed., "Technical Mechanics part XII: Biomechanics", 2011, IPPT PAN, Warsaw (in Polish).Google Scholar

  • Weiss J. A.: "A constitutive model and finite element representation for transversely isotropic soft tissues", 1994, Ph.D. thesis, University of Utah, Salt Lake City.Google Scholar

About the article


Published Online: 2011-10-29

Published in Print: 2011-01-01


Citation Information: Archive of Mechanical Engineering, ISSN (Print) 0004-0738, DOI: https://doi.org/10.2478/v10180-011-0021-7.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jie Cheng and Lucy T. Zhang
International Journal of Computational Methods, 2017, Page 1850028
[2]
Marek Pawlikowski
Mechanics of Time-Dependent Materials, 2014, Volume 18, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in